Skip to main content

Robust Control Design Solution for a Permanent Magnet Synchronous Generator of a Wind Turbine Model

  • 680 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 542)


The paper addresses the development of a perturb and observe algorithm implemented for maximum power point tracking control of a permanent magnet synchronous generator. It is shown that this algorithm tracks the optimum operation point and provides fast response even in the presence of faults. The strategy implements the tracking algorithm by using real—time measurements, while providing maximum power to the grid without using online data training. The solution is simulated in the Matlab and Simulink to verify the effectiveness of the proposed approach when fault–free and faulty conditions are considered. The simulation results highlight efficient, intrinsic and passive fault tolerant performances of the algorithm for electric generators and converters with low inertia.


This is a preview of subscription content, log in via an institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Banu, I.V., Istrate, M.: Modeling of maximum power point tracking algorithm for photovoltaic systems. In: 2012 International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 25–27 October 2012, pp. 953–957. IEEE (2012).

  2. Castellani, F., Garinei, A., Terzi, L., Astolfi, D., Gaudiosi, M.: Improving windfarm operation practice through numerical modelling and supervisory control and data acquisition data analysis. IET Renew. Power Gener. 8(4), 367–379 (2014).

    Article  Google Scholar 

  3. Garcia-Sanz, M., Houpis, C.H.: Wind Energy Systems: Control Engineering Design. CRC Press, Boca Raton (2012). ISBN 978-1439821794

    Google Scholar 

  4. Gasch, R., Twele, J.: Wind Power Plants: Fundamentals, Design, Construction and Operation, 2nd edn. Springer, Heidelberg (2012). ISBN 978-3642229374.

  5. Heier, S.: Grid Integration of Wind Energy Conversion Systems, 3rd edn. Wiley, London (2014)

    Book  Google Scholar 

  6. Heier, S.: Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems. Engineering & Transportation, 3rd edn. Wiley, Hoboken (2014). ISBN 978-1119962946

    Google Scholar 

  7. Khouloud, B., Mahieddine, A., Tahar, B., Rabah, L., Azzeddine, G.: Robust control of doubly fed induction generator for wind turbine under sub-synchronous operation mode. Energy Procedia 74(1), 886–899 (2015).

    Article  Google Scholar 

  8. Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis. LNCIS, Springer, Heidelberg (2003).

    Book  MATH  Google Scholar 

  9. Manwell, J.F., McGowan, J.G., Rogers, A.L.: Wind Energy Explained: Theory, Design, and Application. Wiley, West Sussex (2002)

    Book  Google Scholar 

  10. MathWorks: MathWorks Wind Turbine. 29 May 2019.

  11. Mohammadi, J., Vaez-Zadeh, S., Afsharnia, S., Daryabeigi, E.: A combined vector and direct power control for DFIG-based wind turbines. IEEE Trans. Sustain. Energy 5(3), 767–775 (2014).

    Article  Google Scholar 

  12. Odgaard, P.F., Stoustrup, J., Kinnaert, M.: Fault-tolerant control of wind turbines: a benchmark model. IEEE Trans. Control Syst. Technol. 21(4), 1168–1182 (2013). ISSN 1063-6536.

  13. Odgaard, P.F., Stoustrup, J.: Fault tolerant wind farm control - a benchmark model. In: Proceedings of the IEEE Multiconference on Systems and Control - MSC2013, Hyderabad, India, pp. 1–6, 28–30 August 2013

    Google Scholar 

  14. Pramod, J.: Wind Energy Engineering. McGraw-Hill, New York (2010)

    Google Scholar 

  15. Simani, S., Farsoni, S.: Fault diagnosis and sustainable control of wind turbines: robust data-driven and model-based strategies. In: Mechanical Engineering, 1st edn. Butterworth-Heinemann - Elsevier, Oxford (2018). ISBN 9780128129845

    Google Scholar 

  16. Thongam, J.S., Ouhrouche, M.: Fundamental and Advanced Topics in Wind Power, chapter MPPT Control Methods in Wind Energy Conversion Systems, pp. 339–360. IntechOpen, Rijeka (2014). ISBN 978-953-307-508-2.

  17. Wang, Q., Chang, L.: An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans. Power Electron. 19(5), 1242–1249 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Silvio Simani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simani, S., Ayala, E. (2023). Robust Control Design Solution for a Permanent Magnet Synchronous Generator of a Wind Turbine Model. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 542. Springer, Cham.

Download citation

Publish with us

Policies and ethics