Skip to main content

Genome-Wide Prediction of Disease Resistance Gene Analogs in Flax

  • Chapter
  • First Online:
The Flax Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Flax (Linum usitatissimum L.) is an important crop as the sources of fiber and seed oil. Annually, various pathogens cause significant loss to flax production. Thus, finding the underlying genetic bases for plant resistance to pathogens is essential for plant geneticists and breeders. Several types of resistance gene analogs (RGAs) such as NBS-LRR, RLK, RLP, and TM-CC play roles as pathogen invasion sensors or in the signal transduction pathways of hypersensitive response. Genome-wide RGA prediction facilitates resistance gene identification, gene cloning, and biological function verification. Because of significant structural features and conserved domains and motifs exist in various RGAs, computational approaches are effective for predicting and screening genome-wide RGAs. In this context, some bioinformatics pipelines for RGA prediction have been developed. This chapter reviews the recent progress of bioinformatics pipelines and their applications in flax resistance gene studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akita M, Valkonen JP (2002) A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes. J Mol Evol 55:595–605

    CAS  PubMed  Google Scholar 

  • Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ et al (1997) Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9:641–651

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J et al (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 12:1871–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernoux M, Ve T, Williams S, Warren C, Hatters D et al (2011) Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E et al (2014) Dissemination of scientific software with Galaxy ToolShed. Genome Biol 15:403

    PubMed  PubMed Central  Google Scholar 

  • Blum A, Castel L, Trinsoutrot-Gattin I, Driouich A, Laval K (2021) Identification of tomato Ve1 homologous proteins in flax and assessment for race-specific resistance in two fiber flax cultivars against Verticillium dahliae Race 1. Plants (Basel) 10

    Google Scholar 

  • Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T (2014) Immune receptor complexes at the plant cell surface. Curr Opin Plant Biol 20:47–54

    PubMed  Google Scholar 

  • Calle Garcia J, Guadagno A, Paytuvi-Gallart A, Saera-Vila A, Amoroso CG et al (2022) PRGdb 4.0: an updated database dedicated to genes involved in plant disease resistance process. Nucleic Acids Res 50:D1483–D1490

    Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G et al (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562

    CAS  PubMed  Google Scholar 

  • Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines 2:Article 27

    Google Scholar 

  • Chen Z, Zhao P, Li F, Leier A, Marquez-Lago TT et al (2018) iFeature: a Python package and web server for features extraction and selection from protein and peptide sequences. Bioinformatics 34:2499–2502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Jiang H, Zhao Y, Qian Y, Zhu S et al (2010) A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genet Mol Biol 33:292–297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    CAS  PubMed  Google Scholar 

  • Dodds PN, Lawrence GJ, Ellis JG (2001) Contrasting modes of evolution acting on the complex N locus for rust resistance in flax. Plant J 27:439–453

    CAS  PubMed  Google Scholar 

  • Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    CAS  PubMed  Google Scholar 

  • Eriksson J, Henning E (1894) Die Hauptresultate einer neuen Untersuchung über die Getreideroste. Z Pflanzenkrkh 4:66–73

    Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    CAS  PubMed  Google Scholar 

  • Fritz-Laylin LK, Krishnamurthy N, Tor M, Sjolander KV, Jones JD (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol 138:611–623

    Google Scholar 

  • Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv preprint 1207.3907 [q-bio.GN]

    Google Scholar 

  • Gohre V, Spallek T, Haweker H, Mersmann S, Mentzel T et al (2008) Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol 18:1824–1832

    PubMed  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    CAS  PubMed  Google Scholar 

  • He L, Xiao J, Rashid KY, Yao Z, Li P et al (2018) Genome-wide association studies for pasmo resistance in flax (Linum usitatissimum L.). Front Plant Sci 9:1982

    Google Scholar 

  • Heslop-Harrison JS, Murata M, Ogura Y, Schwarzacher T, Motoyoshi F (1999) Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11:31–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MRMG (1990) A compendium on host genes in flax conferring resistance to flax rust. Plant Breed 104:89–100

    Google Scholar 

  • Islam T, Vera C, Slaski J, Mohr R, Rashid KY et al (2021) Fungicide management of pasmo disease of flax and sensitivity of Septoria linicola to Pyraclostrobin and Fluxapyroxad. Plant Dis 105:1677–1684

    CAS  PubMed  Google Scholar 

  • Jones JD, Banfield MJ (2017) Two-faced TIRs trip the immune switch. Proc Natl Acad Sci U S A 114:2445–2446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JD (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Google Scholar 

  • Jorgensen TH, Emerson BC (2009) RPW8 and resistance to powdery mildew pathogens in natural populations of Arabidopsis lyrata. New Phytol 182:984–993

    CAS  PubMed  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci U S A 103:11086–11091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kale SM, Pardeshi VC, Barvkar VT, Gupta VS, Kadoo NY (2013) Genome-wide identification and characterization of nucleotide binding site leucine-rich repeat genes in linseed reveal distinct patterns of gene structure. Genome 56:91–99

    CAS  PubMed  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    CAS  PubMed  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G et al (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98:6511–6515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lim CJ, Lee BW, Choi JP, Oh SK et al (2012) A genome-wide comparison of NB-LRR type of resistance gene analogs (RGA) in the plant kingdom. Mol Cells 33:385–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kourelis J, Sakai T, Adachi H, Kamoun S (2021) RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biol 19:e3001124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwaha SK, Chauhan P, Hedlund K, Ahren D (2016) NBSPred: a support vector machine-based high-throughput pipeline for plant resistance protein NBSLRR prediction. Bioinformatics 32:1223–1225

    CAS  PubMed  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence GJ, Anderson PA, Dodds PN, Ellis JG (2010) Relationships between rust resistance genes at the M locus in flax. Mol Plant Pathol 11:19–32

    CAS  PubMed  Google Scholar 

  • Ledesma-Ramirez L, Solis-Moya E, Iturriaga G, Sehgal D, Reyes-Valdes MH et al (2019) GWAS to identify genetic loci for resistance to yellow rust in wheat pre-breeding lines derived from diverse exotic crosses. Front Plant Sci 10:1390

    PubMed  PubMed Central  Google Scholar 

  • Lewis TE, Sillitoe I, Dawson N, Lam SD, Clarke T et al (2018) Gene3D: extensive prediction of globular domains in proteins. Nucleic Acids Res 46:D435–D439

    CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    PubMed  PubMed Central  Google Scholar 

  • Li P, Quan X, Jia G, Xiao J, Cloutier S et al (2016) RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics 17:852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252:1162–1164

    CAS  PubMed  Google Scholar 

  • Ma Y, Chhapekar SS, Lu L, Oh S, Singh S et al (2021) Genome-wide identification and characterization of NBS-encoding genes in Raphanus sativus L. and their roles related to Fusarium oxysporum resistance. BMC Plant Biol 21:47

    Google Scholar 

  • Macho AP, Zipfel C (2015) Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr Opin Microbiol 23:14–22

    CAS  PubMed  Google Scholar 

  • Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R (2013) Gene duplication as a major force in evolution. J Genet 92:155–161

    PubMed  Google Scholar 

  • Marone D, Russo MA, Laido G, De Leonardis AM, Mastrangelo AM (2013) Plant nucleotide binding site-leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meinhardt C, Howland A, Ellersieck M, Scaboo A, Diers B et al (2021) Resistance gene pyramiding and rotation to combat widespread soybean cyst nematode virulence. Plant Dis 105:3238–3243

    CAS  PubMed  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW et al (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    CAS  PubMed  Google Scholar 

  • Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD (2016) PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 44:D336–D342

    CAS  PubMed  Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15:349–357

    CAS  PubMed  Google Scholar 

  • Naish M, Alonge M, Wlodzimierz P, Tock AJ, Abramson BW et al (2021) The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374:eabi7489

    Google Scholar 

  • Pal T, Jaiswal V, Chauhan RS (2016) DRPPP: a machine learning based tool for prediction of disease resistance proteins in plants. Comput Biol Med 78:42–48

    CAS  PubMed  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    CAS  PubMed  Google Scholar 

  • Pantaliao GF, Narciso M, Guimaraes C, Castro A, Colombari JM et al (2016) Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit. Genetica 144:651–664

    CAS  PubMed  Google Scholar 

  • Park SG, Noh E, Choi S, Choi B, Shin IG et al (2021) Draft genome assembly and transcriptome dataset for European turnip (Brassica rapa L. ssp. rapifera), ECD4 carrying clubroot resistance. Front Genet 12:651298

    Google Scholar 

  • Pavese V, Cavalet Giorsa E, Barchi L, Acquadro A, Torello Marinoni D et al (2021) Whole-genome assembly of Corylus avellana cv ‘Tonda Gentile delle Langhe’ using linked-reads (10X Genomics). G3 (Bethesda)

    Google Scholar 

  • Plank VD (1963) Vertical and horizontal resistance against potato blight, pp 171–205. https://doi.org/10.1016/B978-0-12-711450-750017-2

  • Ponting CP, Russell RR (2002) The natural history of protein domains. Annu Rev Biophys Biomol Struct 31:45–71

    CAS  PubMed  Google Scholar 

  • Pradhan SK, Nayak DK, Mohanty S, Behera L, Barik SR et al. (2015) Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice (N Y) 8:51

    Google Scholar 

  • Pritchard L, Birch PR (2014) The zigzag model of plant-microbe interactions: is it time to move on? Mol Plant Pathol 15:865–870

    PubMed  PubMed Central  Google Scholar 

  • Ramalingam J, Raveendra C, Savitha P, Vidya V, Chaithra TL et al (2020) Gene pyramiding for achieving enhanced resistance to bacterial blight, blast, and sheath blight diseases in rice. Front Plant Sci 11:591457

    PubMed  PubMed Central  Google Scholar 

  • Rijzaani H, Bayer PE, Rouard M, Dolezel J, Batley J et al. (2021) The pangenome of banana highlights differences between genera and genomes. Plant Genome e20100

    Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanseverino W, Roma G, De Simone M, Faino L, Melito S et al (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res 38:D814–D821

    CAS  PubMed  Google Scholar 

  • Sanseverino W, Hermoso A, D’Alessandro R, Vlasova A, Andolfo G et al (2013) PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants. Nucleic Acids Res 41:D1167–D1171

    CAS  PubMed  Google Scholar 

  • Santana Silva RJ, Micheli F (2020) RRGPredictor, a set-theory-based tool for predicting pathogen-associated molecular pattern receptors (PRRs) and resistance (R) proteins from plants. Genomics 112:2666–2676

    CAS  PubMed  Google Scholar 

  • Sayers EW, Bolton EE, Brister JR, Canese K, Chan J et al (2022) Database resources of the national center for biotechnology information. Nucleic Acids Res 50:D20–D26

    CAS  PubMed  Google Scholar 

  • Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT et al (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274:2063–2065

    CAS  PubMed  Google Scholar 

  • Sekhwal MK, Li P, Lam I, Wang X, Cloutier S et al (2015) Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci 16:19248–19290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Srivastava P, Mavi GS, Kaur S, Kaur J et al (2021) Resurrection of wheat cultivar PBW343 Using marker-assisted gene pyramiding for rust resistance. Front Plant Sci 12:570408

    PubMed  PubMed Central  Google Scholar 

  • Sharma Poudel R, Al-Hashel AF, Gross T, Gross P, Brueggeman R (2018) Pyramiding rpg4- and Rpg1-mediated stem rust resistance in barley requires the Rrr1 gene for both to Function. Front Plant Sci 9:1789

    Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N et al (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    CAS  PubMed  Google Scholar 

  • Stakman EC (1915) Relation between Puccinia graminis and plants highly resistant to its attack. J of Agric Res 4:193–200

    Google Scholar 

  • Stanke M, Morgenstern B (2005) AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res 33:W465–W467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steuernagel B, Jupe F, Witek K, Jones JD, Wulff BB (2015) NLR-parser: rapid annotation of plant NLR complements. Bioinformatics 31:1665–1667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steuernagel B, Witek K, Krattinger SG, Ramirez-Gonzalez RH, Schoonbeek HJ et al (2020) The NLR-annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol 183:468–482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Zhang F, Yan X, Zhang X, Dong Z et al (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J 15:953–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tirnaz S, Bayer PE, Inturrisi F, Zhang F, Yang H et al (2020) Resistance gene analogs in the Brassicaceae: identification, characterization, distribution, and evolution. Plant Physiol 184:909–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toda N, Rustenholz C, Baud A, Le Paslier MC, Amselem J et al (2020) NLGenomeSweeper: a tool for genome-wide NBS-LRR resistance gene identification. Genes (Basel) 11

    Google Scholar 

  • van Ooijen G, van den Burg HA, Cornelissen BJ, Takken FL (2007) Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 45:43–72

    PubMed  Google Scholar 

  • Wang Y, Wang P, Guo Y, Huang S, Chen Y et al (2020) prPred: a predictor to identify plant resistance proteins by incorporating k-spaced amino acid (group) pairs. Front Bioeng Biotechnol 8:645520

    PubMed  Google Scholar 

  • Wang L, Zhu T, Rodriguez JC, Deal KR, Dubcovsky J et al. (2021) Aegilops tauschii genome assembly Aet v5.0 features greater sequence contiguity and improved annotation. G3 (Bethesda)

    Google Scholar 

  • Williams SJ, Yin L, Foley G, Casey LW, Outram MA et al (2016) Structure and function of the TIR domain from the grape NLR protein RPV1. Front Plant Sci 7:1850

    PubMed  PubMed Central  Google Scholar 

  • Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C et al (2009) SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37:D380–D386

    CAS  PubMed  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T et al (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    CAS  PubMed  Google Scholar 

  • Xiao S, Charoenwattana P, Holcombe L, Turner JG (2003) The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco. Mol Plant Microbe Interact 16:289–294

    CAS  PubMed  Google Scholar 

  • Yang H, Mohd Saad NS, Ibrahim MI, Bayer PE, Neik TX et al (2021) Candidate Rlm6 resistance genes against Leptosphaeria. maculans identified through a genome-wide association study in Brassica juncea (L.) Czern. Theor Appl Genet 134:2035–2050

    Google Scholar 

  • You FM, Cloutier S (2020) Mapping quantitative trait loci onto chromosome-scale pseudomolecules in flax. Methods Protoc 3

    Google Scholar 

  • You FM, Moumen I, Khan K, Cloutier S (2023) Reference genome sequence of flax. In: You F, Fofana B (eds) The flax genome, compendium of plant genomes. https://doi.org/10.1007/978-3-031-16061-5_1

  • Yu H, Lin T, Meng X, Du H, Zhang J et al (2021) A route to de novo domestication of wild allotetraploid rice. Cell 184(1156–1170):e1114

    Google Scholar 

  • Zakian VA (1995) Telomeres: beginning to understand the end. Science 270:1601–1607

    CAS  PubMed  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    CAS  PubMed  Google Scholar 

  • Zhang W (2020) NLR-Annotator: a tool for de novo annotation of intracellular immune receptor repertoire. Plant Physiol 183:418–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Bernoux M, Bentham AR, Newman TE, Ve T et al (2017) Multiple functional self-association interfaces in plant TIR domains. Proc Natl Acad Sci U S A 114:E2046–E2052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Edwards D, Batley J (2021) Comparison and evolutionary analysis of Brassica nucleotide binding site leucine rich repeat (NLR) genes and importance for disease resistance breeding. Plant Genome 14:e20060

    CAS  PubMed  Google Scholar 

  • Zhong Y, Cheng ZM (2016) A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication. Sci Rep 6:32923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Zhao J, Abbas HMK, Liu Y, Cheng M et al (2018) Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens. Theor Appl Genet 131:2145–2156

    CAS  PubMed  Google Scholar 

  • Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35:345–351

    CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, P., You, F.M. (2023). Genome-Wide Prediction of Disease Resistance Gene Analogs in Flax. In: You, F.M., Fofana, B. (eds) The Flax Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-16061-5_10

Download citation

Publish with us

Policies and ethics