Abstract
This article addresses the issue of detecting traffic signs signalling cycle routes. It is also necessary to read the number or text of the cycle route from the given image. These tags are kept under the identifier IS21 and have a defined, uniform design with text in the middle of the tag. The detection was solved using the You Look Only Once (YOLO) model, which works on the principle of a convolutional neural network. The OCR tool PythonOCR was used to read characters from tags. The success rate of IS21 tag detection is 93.4%, and the success rate of reading text from tags is equal to 85.9%. The architecture described in the article is suitable for solving the defined problem.
Keywords
- YOLOv5
- YOLO
- OCR
- Object detection
- Machine learning
- Computer vision
This is a preview of subscription content, access via your institution.
Buying options




References
Agbemenu, A., Yankey, J., O., E.: An Automatic Number Plate Recognition System using OpenCV and Tesseract OCR Engine. International Journal of Computer Applications 180, 1–5 (May 2018). https://doi.org/10.5120/ijca2018917150
Bao, J., Wang, H., Lv, C., Luo, K., Shen, X.: IOU-guided Siamese tracking. Math. Probl. Eng. 2021, 1–10 (2021). https://doi.org/10.1155/2021/9127092
Basheera, S., Ram, M.: Classification of brain tumors using deep features extracted using CNN. J. Phys: Conf. Ser. 1172, 012016 (2019). https://doi.org/10.1088/1742-6596/1172/1/012016
Bensouilah, M., Zennir, M.N., Taffar, M.: An ALPR system-based deep networks for the detection and recognition. In: DeMarsico, M., DiBaja, G.S., Fred, A. (eds.) Proceedings of the 10th International Conference on Pattern Recognition Applications and Methods (ICPRAM), pp. 204–211. Scitepress. https://doi.org/10.5220/0010229202040211, https://www.webofscience.com/wos/woscc/full-record/WOS:000662835900022, WOS:000662835900022
Chen, D., Zhang, W., Yang, Y.: High-speed railway real-time localization auxiliary method based on deep neural network. In: Simos, T.E., Kalogiratou, Z., Monovasilis, T. (eds.) Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2017 (iccmse-2017). vol. 1906, p. 200019. Amer Inst Physics. https://doi.org/10.1063/1.5012495,https://www.webofscience.com/wos/woscc/full-record/WOS:000419835900200, ISSN 0094-243X WOS:000419835900200
Dobrovolny, M., Mls, K., Krejcar, O., Mambou, S., Selamat, A.: Medical image data upscaling with generative adversarial networks. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 739–749. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_66
Ershov, E., Korchagin, S., Kokhan, V., Bezmaternykh, P.: A generalization of Otsu method for linear separation of two unbalanced classes in document image binarization. Comput. Opt. 45, 66–76 (2021). https://doi.org/10.18287/2412-6179-CO-752
Field, M., Hardcastle, N., Jameson, M., Aherne, N., Holloway, L.: Machine learning applications in radiation oncology. Phys. Imaging Radiat. Oncology 19, 13–24 (2021). Elsevier, Amsterdam. https://doi.org/10.1016/j.phro.2021.05.007, https://www.webofscience.com/wos/woscc/full-record/WOS:000694711800003, WOS:000694711800003
Henderson, P., Ferrari, V.: End-to-end training of object class detectors for mean average precision. arXiv:1607.03476 [cs], March 2017. http://arxiv.org/abs/1607.03476
Jain, A., Gupta, J., Khandelwal, S., Kaur, S.: Vehicle license plate recognition, 4, 15–21 (2021). https://doi.org/10.5281/zenodo.5171216
Khazaee, S., Tourani, A., Soroori, S., Shahbahrami, A., Suen, C.Y.: An accurate real-time license plate detection method based on deep learning approaches, 35(12), 2160008. World Scientific Publ. C.o Pte Ltd., Singapore. https://doi.org/10.1142/S0218001421600089, https://www.webofscience.com/wos/woscc/full-record/WOS:000714085600003, WOS:000714085600003
Kshetry, R.: Image preprocessing and modified adaptive thresholding for improving OCR, November 2021
Mambou, S., Krejcar, O., Selamat, A., Dobrovolny, M., Maresova, P., Kuca, K.: Novel thermal image classification based on techniques derived from mathematical morphology: case of breast cancer. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds.) IWBBIO 2020. LNCS, vol. 12108, pp. 683–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45385-5_61
McGovern, A., Wagstaff, K.L.: Machine learning in space: extending our reach. Mach. Learn. 84(3), 335–340 (2011). https://doi.org/10.1007/s10994-011-5249-4
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection, pp. 779–788, June 2016. https://doi.org/10.1109/CVPR.2016.91
Amar, V.S., et al.: Autonomous driving using CNN. Int. J. Res. Appl. Sci. Eng. Technol. 9, 3633–3636 (2021). https://doi.org/10.22214/ijraset.2021.35771
Sham, A.S.D., Pandey, P., Jain, S., Kalaivani, S.: Automatic license plate recognition using YOLOV4 and tesseract OCR. Int. J. Electr. Eng. Technol. 12(5) (2021). https://www.academia.edu/49045889/AUTOMATIC_LICENSE_PLATE_RECOGNITION_USING_YOLOV4_AND_TESSERACT_OCR
Shustanov, A., Yakimov, P.: CNN design for real-time traffic sign recognition. Procedia Eng. 201, 718–725 (2017). https://doi.org/10.1016/j.proeng.2017.09.594, https://www.sciencedirect.com/science/article/pii/S1877705817341231
Sindagi, V., Patel, V.: A survey of recent advances in CNN-based single image crowd counting and density estimation. Pattern Recogn. Lett. 107 (2017). https://doi.org/10.1016/j.patrec.2017.07.007
Upadhyay, U., Mehfuz, F., Mediratta, A., Aijaz, A.: Analysis and architecture for the deployment of dynamic license plate recognition using YOLO darknet. In: 2019 International Conference on Power Electronics, Control and Automation (ICPECA-2019), pp. 111–116. IEEE. https://www.webofscience.com/wos/woscc/full-record/WOS:000540004400022, WOS:000540004400022
Acknowledgements
The work and the contribution were supported by the SPEV project “Smart Solutions in Ubiquitous Computing Environments”, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-FIM-SPEV-2022-2102).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kopecky, L., Dobrovolny, M., Fuchs, A., Selamat, A., Krejcar, O. (2022). Cycle Route Signs Detection Using Deep Learning. In: Nguyen, N.T., Manolopoulos, Y., Chbeir, R., Kozierkiewicz, A., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2022. Lecture Notes in Computer Science(), vol 13501. Springer, Cham. https://doi.org/10.1007/978-3-031-16014-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-16014-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16013-4
Online ISBN: 978-3-031-16014-1
eBook Packages: Computer ScienceComputer Science (R0)