Skip to main content

PI-Cut-Choo and Friends: Compact Blind Signatures via Parallel Instance Cut-and-Choose and More

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13509))

Included in the following conference series:

Abstract

Blind signature schemes are one of the best-studied tools for privacy-preserving authentication. Unfortunately, known constructions of provably secure blind signatures either rely on non-standard hardness assumptions, or require parameters that grow linearly with the number of concurrently issued signatures, or involve prohibitively inefficient general techniques such as general secure two-party computation.

Recently, Katz, Loss and Rosenberg (ASIACRYPT’21) gave a technique that, for the security parameter n, transforms blind signature schemes secure for \(O(\log n)\) concurrent executions of the blind signing protocol into ones that are secure for any \(\textsf{poly}(n)\) concurrent executions.

This transform has two drawbacks that we eliminate in this paper: 1) the communication complexity of the resulting blind signing protocol grows linearly with the number of signing interactions; 2) the resulting schemes inherit a very loose security bound from the underlying scheme and, as a result, require impractical parameter sizes.

In this work, we give an improved transform for obtaining a secure blind signing protocol tolerating any \(\textsf{poly}(n)\) concurrent executions from one that is secure for \(O(\log n)\) concurrent executions. While preserving the advantages of the original transform, the communication complexity of our new transform only grows logarithmically with the number of interactions. Under the CDH  and RSA  assumptions, we improve on this generic transform in terms of concrete efficiency and give (1) a BLS-based blind signature scheme over a standard-sized group where signatures are of size roughly 3 KB and communication per signature is roughly 120 KB; and (2) an Okamoto-Guillou-Quisquater-based blind signature scheme with signatures and communication of roughly 9 KB and 8 KB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We instantiate \(\textsf{PRF}\) efficiently using random oracles [18].

  2. 2.

    In a different context, namely secure multi-party computation, the combination of puncturable pseudorandom functions and cut-and-choose has been used before.

  3. 3.

    If we rely on these proof systems, our scheme can be proven secure assuming that both the RSA assumption and either of these assumptions hold.

  4. 4.

    Note that without this optimization, the security loss would be exponential in K.

  5. 5.

    In our concrete instantiation, \(\log (K) \approx 6.5\).

References

  1. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Can round-optimal lattice-based blind signatures be practical? Cryptology ePrint Archive, Report 2021/1565 (2021). https://eprint.iacr.org/2021/1565

  2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003)

    Article  MathSciNet  Google Scholar 

  3. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_2

    Chapter  MATH  Google Scholar 

  4. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30

    Chapter  Google Scholar 

  6. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008: 15th Conference on Computer and Communications Security, Alexandria, Virginia, USA, 27–31 October 2008, pp. 345–356. ACM Press (2008)

    Google Scholar 

  7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  8. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_8

    Chapter  MATH  Google Scholar 

  9. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology - CRYPTO 1982, Santa Barbara, CA, USA, pp. 199–203. Plenum Press, New York (1982)

    Google Scholar 

  10. Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4

    Chapter  Google Scholar 

  11. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_12

  12. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  13. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_3

    Chapter  MATH  Google Scholar 

  14. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27

    Chapter  Google Scholar 

  15. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36

    Chapter  Google Scholar 

  16. Ghadafi, E.: Efficient round-optimal blind signatures in the standard model. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 455–473. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_26

    Chapter  Google Scholar 

  17. Goldberg, S., Reyzin, L., Sagga, O., Baldimtsi, F.: Efficient noninteractive certification of RSA moduli and beyond. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 700–727. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_24

    Chapter  Google Scholar 

  18. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th Annual Symposium on Foundations of Computer Science, Singer Island, Florida, 24–26 October 1984, pp. 464–479. IEEE Computer Society Press (1984)

    Google Scholar 

  19. Grontas, P., Pagourtzis, A., Zacharakis, A., Zhang, B.: Towards everlasting privacy and efficient coercion resistance in remote electronic voting. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 210–231. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_15

    Chapter  Google Scholar 

  20. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_12

    Chapter  Google Scholar 

  21. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revisited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12171, pp. 500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_18

    Chapter  Google Scholar 

  22. Heilman, E., Baldimtsi, F., Goldberg, S.: Blindly signed contracts: anonymous on-blockchain and off-blockchain bitcoin transactions. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 43–60. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_4

    Chapter  Google Scholar 

  23. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052233

    Chapter  Google Scholar 

  24. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the algebraic group model. In: PKC 2022. LNCS. Springer, Heidelberg (2022, to appear)

    Google Scholar 

  25. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 468–492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_16

    Chapter  Google Scholar 

  26. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_3

    Chapter  Google Scholar 

  27. Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_5

    Chapter  Google Scholar 

  28. Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_27

    Chapter  Google Scholar 

  29. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054141

    Chapter  Google Scholar 

  30. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  Google Scholar 

  31. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium on Theory of Computing, New York, NY, USA, 31 May–3 June 2014, pp. 475–484. ACM Press (2014)

    Google Scholar 

  32. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

  33. Tessaro, S., Zhu, C.: Short pairing-free blind signatures with exponential security. Cryptology ePrint Archive, Report 2022/047 (2022). https://eprint.iacr.org/2022/047

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B. (2022). PI-Cut-Choo and Friends: Compact Blind Signatures via Parallel Instance Cut-and-Choose and More. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13509. Springer, Cham. https://doi.org/10.1007/978-3-031-15982-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15982-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15981-7

  • Online ISBN: 978-3-031-15982-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics