Skip to main content

Immunodiagnostics of Tuberculosis: Recent Discoveries

  • Chapter
  • First Online:
Tuberculosis

Part of the book series: Integrated Science ((IS,volume 11))

Summary

Tuberculosis (TB) is a serious public health concern worldwide. Although numerous current immunological approaches for TB detection have advanced significantly, there remains a significant restriction due to the lack of extremely sensitive or specific tests to identify all TB patients reliably. Therefore, developing a panel of markers or a biomarker might help achieve global TB control. This chapter aims to evaluate the recent immunodiagnostics of TB and novel biomarker discoveries.

Graphical Abstract

Tuberculosis immunodiagnostics

Stopping TB requires a government program that functions every day of the year, and that's hard in certain parts of the world. And partly it’s because of who tuberculosis affects: It tends to affect the poor and disenfranchised most.

Tom Frieden

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2019) Global tuberculosis report 2018. Geneva

    Google Scholar 

  2. Cho Y, Park Y, Sim B, Kim J, Lee H, Cho S-N, Kang YA, Lee S-G (2020) Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach. Sci Rep 10(1):1–11

    Google Scholar 

  3. Eribo OA, Leqheka MS, Malherbe ST, McAnda S, Stanley K, van der Spuy GD, Walzl G, Chegou NN (2020) Host urine immunological biomarkers as potential candidates for the diagnosis of tuberculosis. Int J Infect Dis 99:473–481

    Article  CAS  PubMed  Google Scholar 

  4. Aggerbeck H, Ruhwald M, Hoff ST, Borregaard B, Hellstrom E, Malahleha M, Siebert M, Gani M, Seopela V, Diacon A (2018) C-Tb skin test to diagnose Mycobacterium tuberculosis infection in children and HIV-infected adults: a phase 3 trial. PLoS ONE 13(9):e0204554

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ruhwald M, Aggerbeck H, Gallardo RV, Hoff ST, Villate JI, Borregaard B, Martinez JA, Kromann I, Penas A, Anibarro LL (2017) Safety and efficacy of the C-Tb skin test to diagnose Mycobacterium tuberculosis infection, compared with an interferon γ release assay and the tuberculin skin test: a phase 3, double-blind, randomised, controlled trial. Lancet Respir Med 5(4):259–268

    Article  CAS  PubMed  Google Scholar 

  6. Aggerbeck H, Giemza R, Joshi P, Tingskov PN, Hoff ST, Boyle J, Andersen P, Lewis DJ (2013) Randomised clinical trial investigating the specificity of a novel skin test (C-Tb) for diagnosis of M. tuberculosis infection. PloS one 8(5):e64215

    Google Scholar 

  7. Hoff ST, Peter JG, Theron G, Pascoe M, Tingskov PN, Aggerbeck H, Kolbus D, Ruhwald M, Andersen P, Dheda K (2016) Sensitivity of C-Tb: a novel RD-1-specific skin test for the diagnosis of tuberculosis infection. Eur Respir J 47(3):919–928

    Article  CAS  PubMed  Google Scholar 

  8. Targowski T, Chelstowska S, Plusa T (2014) IGRA as a predictive factor of silent pulmonary changes in individuals following exposure to tuberculosis. Lung 192(6):869–874

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mamishi S, Pourakbari B, Marjani M, Mahmoudi S (2014) Diagnosis of latent tuberculosis infection among immunodeficient individuals: review of concordance between interferon-gamma release assays and the tuberculin skin test. Br J Biomed Sci 71(3):115–124. https://doi.org/10.1080/09674845.2014.11669976

    Article  CAS  PubMed  Google Scholar 

  10. Bulterys MA, Wagner B, Redard-Jacot M, Suresh A, Pollock NR, Moreau E, Denkinger CM, Drain PK, Broger T (2020) Point-of-care urine LAM tests for tuberculosis diagnosis: a status update. J Clin Med 9(1):111

    Article  CAS  Google Scholar 

  11. Songkhla MN, Tantipong H, Tongsai S, Angkasekwinai N (2019) Lateral flow urine lipoarabinomannan assay for diagnosis of active tuberculosis in adults with human immunodeficiency virus infection: a prospective cohort study. In: Open forum infectious diseases, vol 4. Oxford University Press US, p ofz132

    Google Scholar 

  12. Iskandar A, Nursiloningrum E, Arthamin MZ, Olivianto E, Chandrakusuma MS (2017) The diagnostic value of urine lipoarabinomannan (LAM) antigen in childhood tuberculosis. J clin Diagnostic Res: JCDR 11(3):EC32

    Google Scholar 

  13. Minion J, Leung E, Talbot E, Dheda K, Pai M, Menzies D (2011) Diagnosing tuberculosis with urine lipoarabinomannan: systematic review and meta-analysis. Eur Respir J 38(6):1398–1405

    Article  CAS  PubMed  Google Scholar 

  14. Steingart KR, Dendukuri N, Henry M, Schiller I, Nahid P, Hopewell PC, Ramsay A, Pai M, Laal S (2009) Performance of purified antigens for serodiagnosis of pulmonary tuberculosis: a meta-analysis. Clin Vaccine Immunol 16(2):260–276

    Article  CAS  PubMed  Google Scholar 

  15. Laal S, Skeiky YA (2005) Immune-based methods. In: Tuberculosis and the tubercle bacillus. American Society of Microbiology, pp 71–83

    Google Scholar 

  16. Goodridge A, Cueva C, Lahiff M, Muzanye G, Johnson JL, Nahid P, Riley LW (2012) Anti-phospholipid antibody levels as biomarker for monitoring tuberculosis treatment response. Tuberculosis 92(3):243–247

    Article  CAS  PubMed  Google Scholar 

  17. Togun TO, MacLean E, Kampmann B, Pai M (2018) Biomarkers for diagnosis of childhood tuberculosis: a systematic review. PLoS ONE 13(9):e0204029

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takenami I, de Oliveira CC, Lima FR, Soares J, Machado A Jr, Riley LW, Arruda S (2016) Immunoglobulin G response to mammalian cell entry 1A (Mce1A) protein as biomarker of active tuberculosis. Tuberculosis 100:82–88

    Article  CAS  PubMed  Google Scholar 

  19. Dos Santos DC, Lovero KL, Schmidt CM, Barros ACM, Quintanilha AP, Barbosa AP, Pone MV, Pone SM, Araujo JM, de Paula MC (2020) Serological biomarkers for monitoring response to treatment of pulmonary and extrapulmonary tuberculosis in children and adolescents. Tuberculosis 123:101960

    Article  PubMed  Google Scholar 

  20. Wu X, Yang Y, Zhang J, Li B, Liang Y, Zhang C, Dong M (2010) Comparison of antibody responses to seventeen antigens from Mycobacterium tuberculosis. Clin Chim Acta 411(19–20):1520–1528

    Article  CAS  PubMed  Google Scholar 

  21. Khurshid S, Afzal M, Khalid R, Akhtar MW, Qazi MH (2017) Potential of multi-component antigens for tuberculosis diagnosis. Biologicals 48:109–113

    Article  CAS  PubMed  Google Scholar 

  22. Kashyap RS, Rajan AN, Ramteke SS, Agrawal VS, Kelkar SS, Purohit HJ, Taori GM, Daginawala HF (2007) Diagnosis of tuberculosis in an Indian population by an indirect ELISA protocol based on detection of antigen 85 complex: a prospective cohort study. BMC Infect Dis 7(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  23. Goyal B, Kumar K, Gupta D, Agarwal R, Latawa R, Sheikh JA, Verma I (2014) Utility of B-cell epitopes based peptides of RD1 and RD2 antigens for immunodiagnosis of pulmonary tuberculosis. Diagn Microbiol Infect Dis 78(4):391–397

    Article  CAS  PubMed  Google Scholar 

  24. Yang Y, Feng J, Zhang J, Zhao W, Liu Y, Liang Y, Bai X, Wang L, Wu X (2015) Immune responses to a recombinant Rv0057-Rv1352 fusion protein of Mycobacterium tuberculosis. Ann Clin Lab Sci 45(1):39–48

    CAS  PubMed  Google Scholar 

  25. Araujo LS, Moraes RM, Trajman A, Saad MHF (2010) Assessment of the IgA immunoassay diagnostic potential of the Mycobacterium tuberculosis MT10. 3-MPT64 fusion protein in tuberculous pleural fluid. Clin Vaccine Immunol 17(12):1963–1969

    Google Scholar 

  26. Cheng Z, Zhao JW, Sun ZQ, Song YZ, Sun QW, Zhang XY, Zhang XL, Wang HH, Guo XK, Liu YF (2011) Evaluation of a novel fusion protein antigen for rapid serodiagnosis of tuberculosis. J Clin Lab Anal 25(5):344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lagrange PH, Thangaraj SK, Dayal R, Deshpande A, Ganguly NK, Girardi E, Joshi B, Katoch K, Katoch VM, Kumar M (2014) A toolbox for tuberculosis (TB) diagnosis: an Indian multi-centric study (2006–2008); evaluation of serological assays based on PGL-Tb1 and ESAT-6/CFP10 antigens for TB diagnosis. PLoS ONE 9(5):e96367

    Article  PubMed  PubMed Central  Google Scholar 

  28. Achkar JM, Ziegenbalg A (2012) Antibody responses to mycobacterial antigens in children with tuberculosis: challenges and potential diagnostic value. Clin Vaccine Immunol 19(12):1898–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R, Velu V, Eri R, Larsson M, Shankar EM (2019) Immune biomarkers for diagnosis and treatment monitoring of tuberculosis: current developments and future prospects. Front Microbiol 10:2789

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pourakbari B, Mamishi S, Benvari S, Mahmoudi S (2019) Comparison of the QuantiFERON-TB gold plus and QuantiFERON-TB gold in-tube interferon-gamma release assays: a systematic review and meta-analysis. Adv Med Sci 64(2):437–443. https://doi.org/10.1016/j.advms.2019.09.001

    Article  PubMed  Google Scholar 

  31. Pourakbari B, Mamishi S, Benvari S, Sauzullo I, Bedini A, Valentini P, Keicho N, Mahmoudi S (2020) Can interferon-γ release assays be useful for monitoring the response to anti-tuberculosis treatment?: A systematic review and meta-analysis. Arch Immunol Ther Exp 68(1):4

    Article  CAS  Google Scholar 

  32. Keshavarz Valian S, Mahmoudi S, Pourakbari B, Abdolsalehi MR, Eshaghi H, Mamishi S (2019) Screening of healthcare workers for latent tuberculosis infection in the low tuberculosis burden country: QuantiFERON-TB gold in tube test or tuberculin skin test? Arch Environ Occup Health 74(3):109–114

    Google Scholar 

  33. Della Bella C, Spinicci M, Alnwaisri HFM, Bartalesi F, Tapinassi S, Mencarini J, Benagiano M, Grassi A, D’Elios S, Troilo A (2020) LIOFeron® TB/LTBI: a novel and reliable test for LTBI and tuberculosis. Int J Infect Dis 91:177–181

    Article  CAS  PubMed  Google Scholar 

  34. Mahmoudi S, Pourakbari B, Mamishi S (2017) Interferon gamma release assay in response to PE35/PPE68 proteins: a promising diagnostic method for diagnosis of latent tuberculosis. Eur Cytokine Netw 28(1):36–40. https://doi.org/10.1684/ecn.2017.0391

    Article  CAS  PubMed  Google Scholar 

  35. Pourakbari B, Mamishi S, Marjani M, Rasulinejad M, Mariotti S, Mahmoudi S (2015) Novel T-cell assays for the discrimination of active and latent tuberculosis infection: the diagnostic value of PPE family. Mol Diagn Ther 19(5):309–316. https://doi.org/10.1007/s40291-015-0157-0

    Article  CAS  PubMed  Google Scholar 

  36. Mamishi S, Mahmoudi S, Banar M, Hosseinpour Sadeghi R, Marjani M, Pourakbari B (2019) Diagnostic accuracy of interferon (IFN)-gamma inducible protein 10 (IP-10) as a biomarker for the discrimination of active and latent tuberculosis. Mol Biol Rep 46(6):6263–6269. https://doi.org/10.1007/s11033-019-05067-0

    Article  CAS  PubMed  Google Scholar 

  37. Mamishi S, Pourakbari B, Sadeghi RH, Marjani M, Mahmoudi S (2019) Diagnostic accuracy of monocyte chemotactic protein (MCP)-2 as biomarker in response to PE35/PPE68 proteins: a promising diagnostic method for the discrimination of active and latent tuberculosis. Protein Pept Lett 26(4):281–286. https://doi.org/10.2174/0929866526666190119165805

    Article  CAS  PubMed  Google Scholar 

  38. Mamishi S, Pourakbari B, Shams H, Marjani M, Mahmoudi S (2016) Improving T-cell assays for diagnosis of latent TB infection: confirmation of the potential role of testing Interleukin-2 release in Iranian patients. Allergol Immunopathol 44(4):314–321. https://doi.org/10.1016/j.aller.2015.09.004

    Article  CAS  Google Scholar 

  39. Manngo PM, Gutschmidt A, Snyders CI, Mutavhatsindi H, Manyelo CM, Makhoba NS, Ahlers P, Hiemstra A, Stanley K, McAnda S (2019) Prospective evaluation of host biomarkers other than interferon gamma in QuantiFERON plus supernatants as candidates for the diagnosis of tuberculosis in symptomatic individuals. J Infect 79(3):228–235

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mihret A, Bekele Y, Bobosha K, Kidd M, Aseffa A, Howe R, Walzl G (2013) Plasma cytokines and chemokines differentiate between active disease and non-active tuberculosis infection. J Infect 66(4):357–365

    Article  PubMed  Google Scholar 

  41. Clifford V, Tebruegge M, Zufferey C, Germano S, Forbes B, Cosentino L, Matchett E, McBryde E, Eisen D, Robins-Browne R (2019) Cytokine biomarkers for the diagnosis of tuberculosis infection and disease in adults in a low prevalence setting. Tuberculosis 114:91–102

    Article  CAS  PubMed  Google Scholar 

  42. Tebruegge M, Dutta B, Donath S, Ritz N, Forbes B, Camacho-Badilla K, Clifford V, Zufferey C, Robins-Browne R, Hanekom W (2015) Mycobacteria-specific cytokine responses detect tuberculosis infection and distinguish latent from active tuberculosis. Am J Respir Crit Care Med 192(4):485–499

    Google Scholar 

  43. Mamishi S, Pourakbari B, Teymuri M, Rubbo P-A, Tuaillon E, Keshtkar A, Mahmoudi S (2014) Diagnostic accuracy of IL-2 for the diagnosis of latent tuberculosis: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 33(12):2111–2119

    Article  CAS  PubMed  Google Scholar 

  44. Mamishi S, Pourakbari B, Marjani M, Bahador A, Mahmoudi S (2015) Discriminating between latent and active tuberculosis: the role of interleukin-2 as biomarker. J Infect 70(4):429–431

    Article  PubMed  Google Scholar 

  45. Wu J, Wang S, Lu C, Shao L, Gao Y, Zhou Z, Huang H, Zhang Y, Zhang W (2017) Multiple cytokine responses in discriminating between active tuberculosis and latent tuberculosis infection. Tuberculosis 102:68–75

    Article  PubMed  Google Scholar 

  46. Chen T, Li Z, Yu L, Li H, Lin J, Guo H, Wang W, Chen L, Zhang X, Wang Y (2016) Profiling the human immune response to Mycobacterium tuberculosis by human cytokine array. Tuberculosis 97:108–117

    Article  CAS  PubMed  Google Scholar 

  47. Yao X, Liu Y, Liu Y, Liu W, Ye Z, Zheng C, Ge S (2017) Multiplex analysis of plasma cytokines/chemokines showing different immune responses in active TB patients, latent TB infection and healthy participants. Tuberculosis 107:88–94

    Article  CAS  PubMed  Google Scholar 

  48. Chegou NN, Sutherland JS, Malherbe S, Crampin AC, Corstjens PL, Geluk A, Mayanja-Kizza H, Loxton AG, van der Spuy G, Stanley K (2016) Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax 71(9):785–794

    Article  PubMed  Google Scholar 

  49. Chegou NN, Sutherland JS, Namuganga A-R, Corstjens PL, Geluk A, Gebremichael G, Mendy J, Malherbe S, Stanley K, Van Der Spuy GD (2018) Africa-wide evaluation of host biomarkers in QuantiFERON supernatants for the diagnosis of pulmonary tuberculosis. Sci Rep 8(1):1–12

    Article  CAS  Google Scholar 

  50. Manyelo CM, Solomons RS, Snyders CI, Manngo PM, Mutavhatsindi H, Kriel B, Stanley K, Walzl G, Chegou NN (2019) Application of cerebrospinal fluid host protein biosignatures in the diagnosis of tuberculous meningitis in children from a high burden setting. Mediat Inflamm

    Google Scholar 

  51. Mamishi S, Pourakbari B, Sadeghi RH, Marjani M, Mahmoudi S (2020) Differential gene expression of ASUN, NEMF, PTPRC and DHX29: candidate biomarkers for diagnosis of active and latent tuberculosis. Infect Disord Drug Targets. https://doi.org/10.2174/1871526520666200313144951

    Article  PubMed  Google Scholar 

  52. Maertzdorf J, Repsilber D, Parida SK, Stanley K, Roberts T, Black G, Walzl G, Kaufmann SH (2011) Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun 12(1):15–22

    Article  CAS  PubMed  Google Scholar 

  53. Walzl G, McNerney R, du Plessis N, Bates M, McHugh TD, Chegou NN, Zumla A (2018) Tuberculosis: advances and challenges in development of new diagnostics and biomarkers. Lancet Infect Dis 18(7):e199–e210

    Article  CAS  PubMed  Google Scholar 

  54. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ (2010) An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466(7309):973–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gebremicael G, Kassa D, Alemayehu Y, Gebreegziaxier A, Kassahun Y, van Baarle D, Ottenhoff T, Cliff J, Haks M (2019) Gene expression profiles classifying clinical stages of tuberculosis and monitoring treatment responses in Ethiopian HIV-negative and HIV-positive cohorts. PloS one 14(12):e0226137

    Google Scholar 

  56. Lee S-W, Wu LS-H, Huang G-M, Huang K-Y, Lee T-Y, Weng JT-Y (2016) Gene expression profiling identifies candidate biomarkers for active and latent tuberculosis. BMC Bioinf S1:S3. Springer

    Google Scholar 

  57. Wang C, Peng J, Kuang Y, Zhang J, Dai L (2017) Metabolomic analysis based on 1H-nuclear magnetic resonance spectroscopy metabolic profiles in tuberculous, malignant and transudative pleural effusion. Mol Med Rep 16(2):1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Haas CT, Roe JK, Pollara G, Mehta M, Noursadeghi M (2016) Diagnostic ‘omics’ for active tuberculosis. BMC Med 14(1):1–19

    Article  Google Scholar 

  59. Lau SK, Lam C-W, Curreem SO, Lee K-C, Lau CC, Chow W-N, Ngan AH, To KK, Chan JF, Hung IF (2015) Identification of specific metabolites in culture supernatant of Mycobacterium tuberculosis using metabolomics: exploration of potential biomarkers. Emerg Microbes Infect 4(1):1–10

    Article  Google Scholar 

  60. Frediani JK, Jones DP, Tukvadze N, Uppal K, Sanikidze E, Kipiani M, Tran VT, Hebbar G, Walker DI, Kempker RR (2014) Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study. PLoS ONE 9(10):e108854

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhou A, Ni J, Xu Z, Wang Y, Lu S, Sha W, Karakousis PC, Yao Y-F (2013) Application of 1H NMR spectroscopy-based metabolomics to sera of tuberculosis patients. J Proteome Res 12(10):4642–4649

    Article  CAS  PubMed  Google Scholar 

  62. Schoeman JC, Du Preez I (2012) A comparison of four sputum pre-extraction preparation methods for identifying and characterising Mycobacterium tuberculosis using GCxGC-TOFMS metabolomics. J Microbiol Methods 91(2):301–311

    Article  CAS  PubMed  Google Scholar 

  63. Du Preez I, Loots D (2013) New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis 93(3):330–337

    Article  PubMed  Google Scholar 

  64. Phillips M, Basa-Dalay V, Bothamley G, Cataneo RN, Lam PK, Natividad MPR, Schmitt P, Wai J (2010) Breath biomarkers of active pulmonary tuberculosis. Tuberculosis 90(2):145–151

    Article  CAS  PubMed  Google Scholar 

  65. Kolk A, Van Berkel J, Claassens M, Walters E, Kuijper S, Dallinga J, Van Schooten F (2012) Breath analysis as a potential diagnostic tool for tuberculosis. Int J Tuberc Lung Dis 16(6):777–782

    Article  CAS  PubMed  Google Scholar 

  66. Mahapatra S, Hess AM, Johnson JL, Eisenach KD, DeGroote MA, Gitta P, Joloba ML, Kaplan G, Walzl G, Boom WH (2014) A metabolic biosignature of early response to anti-tuberculosis treatment. BMC Infect Dis 14(1):1–11

    Article  Google Scholar 

  67. Moreira JD, Silva HR, de Toledo VdP, Guimarães TM (2020) Microparticles in the pathogenesis of TB: novel perspectives for diagnostic and therapy management of Mycobacterium tuberculosis infection. Microb Pathog 104176

    Google Scholar 

  68. Angelot F, Seillès E, Biichlé S, Berda Y, Gaugler B, Plumas J, Chaperot L, Dignat-George F, Tiberghien P, Saas P (2009) Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases. Haematologica 94(11):1502–1512

    Google Scholar 

  69. Alipoor SD, Adcock IM, Tabarsi P, Folkerts G, Mortaz E (2020) MiRNAs in tuberculosis: their decisive role in the fate of TB. Eur J Pharmacol 173529

    Google Scholar 

  70. Ndzi EN, Nkenfou CN, Mekue LM, Zentilin L, Tamgue O, Pefura EWY, Kuiaté J-R, Giacca M, Ndjolo A (2019) MicroRNA hsa-miR-29a-3p is a plasma biomarker for the differential diagnosis and monitoring of tuberculosis. Tuberculosis 114:69–76

    Article  CAS  PubMed  Google Scholar 

  71. Pedersen JL, Bokil NJ, Saunders BM (2019) Developing new TB biomarkers, are miRNA the answer? Tuberculosis 118:101860

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shima Mahmoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmoudi, S., Pourakbari, B., Mamishi, S. (2023). Immunodiagnostics of Tuberculosis: Recent Discoveries. In: Rezaei, N. (eds) Tuberculosis. Integrated Science, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-15955-8_8

Download citation

Publish with us

Policies and ethics