Skip to main content

A Unified Multiple Inducible Co-attentions and Edge Guidance Network for Co-saliency Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

The learning-based methods have improved the performances of co-salient object detection (CoSOD). Mining the intra-image saliency individuals and exploring the inter-image co-attention are two challenges. In this paper, we propose a unified Multiple INducible co-attentions and Edge guidance network (MineNet) for CoSOD. Firstly, a classified inducible co-attention (CICA) is designed to model the classification interactions from a group of images. Secondly, a focal inducible co-attention (FICA) is employed to adaptively suppress and aggregate inter-image saliency features. CICA and FICA are jointly embedded into the network to predict the co-attention. The co-attentions of CICA and FICA are collaborative calibration and mutual optimization. Thirdly, we put forward an edge guidance module (EGM) to mine the intra-image saliency individuals, which aims to keep the consistency of co-attention during the feature transfer and refine the object edges. Finally, these three modules are merged into a unified and end-to-end network to predict the fine-grained boundary-preserving salient objects. Experimental results on three prevailing benchmarks show that our MineNet outperforms other competitors in terms of the evaluation metrics. In addition, the proposed method runs at the speed of more than 30 fps on a single GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao, X., Tao, Z., Zhang, B., et al.: Self-adaptively weighted co-saliency detection via rank constraint. IEEE Trans. Image Process. 23(9), 4175–4186 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Chen, C., Tan, Z., Cheng, Q., et al.: UTC: a unified transformer with inter-task contrastive learning for visual dialog. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18103–18112. IEEE, New Orleans (2022)

    Google Scholar 

  3. Cheng, Q., Tan, Z., Wen, K., et al.: Semantic Pre-alignment and ranking learning with unified framework for cross-modal retrieval. IEEE Trans. Circ. Syst. Video Technol. (2022). https://doi.org/10.1109/TCSVT.2022.3182549

  4. Fan, D., Cheng, M., Liu, Y., et al.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557. IEEE, Hawaii (2017)

    Google Scholar 

  5. Fan, D., Gong, C., Cao, Y., et al.: Enhanced-alignment measure for binary foreground map evaluation. In: Proceedings of the International Joint Conference on Artificial Intelligence (2018)

    Google Scholar 

  6. Fan, D., Li, T., Lin, Z., et al.: Re-thinking co-salient object detection. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4339–4354 (2021)

    Google Scholar 

  7. Fidon, L., et al.: Generalised Wasserstein dice score for imbalanced multi-class segmentation using holistic convolutional networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 64–76. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_6

    Chapter  Google Scholar 

  8. Fu, H., Cao, X., Tu, Z.: Cluster-based co-saliency detection. IEEE Trans. Image Process. 22(10), 3766–3778 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, J., Cheng, G., Li, Z., et al.: A unified metric learning-based framework for co-saliency detection. IEEE Trans. Circ.Syst. Video Technol. 28(10), 2473–2483 (2017)

    Article  Google Scholar 

  10. Hsu, K.-J., Tsai, C.-C., Lin, Y.-Y., Qian, X., Chuang, Y.-Y.: Unsupervised CNN-based co-saliency detection with graphical optimization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 485–501. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_30

    Chapter  Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 7132–7141. IEEE, Salt Lake (2018)

    Google Scholar 

  12. Li, Y., Fu, K., Liu, Z., et al.: Efficient saliency-model-guided visual co-saliency detection. IEEE Signal Process. Lett. 22(5), 588–592 (2014)

    Article  Google Scholar 

  13. Li, T., Zhang, K., Shen, S., et al.: Image co-saliency detection and instance co-segmentation using attention graph clustering based graph convolutional network. IEEE Trans. Multimed. 22, 492–505 (2021)

    Google Scholar 

  14. Liu, Z., Zou, W., Li, L., et al.: Co-saliency detection based on hierarchical segmentation. IEEE Signal Process. Lett. 21(1), 88–92 (2013)

    Article  Google Scholar 

  15. Qin, Y., Gu, X., Tan, Z.: Visual context learning based on textual knowledge for image-text retrieval. Neural Netw. 152, 434–449 (2022)

    Google Scholar 

  16. Ren, J., Liu, Z., Zhou, X., et al.: Co-saliency detection via integration of multi-layer convolutional features and inter-image propagation. Neurocomputing 371, 137–146 (2020)

    Article  Google Scholar 

  17. Tan, Z., Hua, Y., Gu, X.: Salient object detection with edge recalibration. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12396, pp. 724–735. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61609-0_57

    Chapter  Google Scholar 

  18. Tan, Z., Gu, X.: Scale balance network for accurate salient object detection. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–7. IEEE, Glasgow (2020)

    Google Scholar 

  19. Tan, Z., Gu, X.: Depth scale balance saliency detection with connective feature pyramid and edge guidance. Appl. Intell. 51(8), 5775–5792 (2021). https://doi.org/10.1007/s10489-020-02150-z

    Article  Google Scholar 

  20. Tan, Z., Gu, X.: Co-saliency detection with intra-group two-stage group semantics propagation and inter-group contrastive learning. Knowl.-Based Syst. 252, 109356 (2022)

    Article  Google Scholar 

  21. Wen, K., Tan, Z., Cheng, Q., et al.: Contrastive cross-modal knowledge sharing pre-training for vision-language representation learning and retrieval. arXiv preprint arXiv:2207.00733 (2022)

  22. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  23. Ye, L., Liu, Z., Li, J., et al.: Co-saliency detection via co-salient object discovery and recovery. IEEE Signal Process. Lett. 22(11), 2073–2077 (2015)

    Article  Google Scholar 

  24. Zhang, D., Han, J., et al.: Cosaliency detection based on intrasaliency prior transfer and deep intersaliency mining. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1163–1176 (2015)

    Article  MathSciNet  Google Scholar 

  25. Zhang, D., Meng, D., Li, C., et al.: A self-paced multiple-instance learning framework for co-saliency detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 594–602. IEEE, Santiago (2015)

    Google Scholar 

  26. Zhang, D., Han, J., Li, C., et al.: Detection of co-salient objects by looking deep and wide. Int. J. Comput. Vis. 120(2), 215–232 (2016)

    Article  MathSciNet  Google Scholar 

  27. Zhang, K., Li, T., Liu, B., et al.: Co-saliency detection via mask-guided fully convolutional networks with multi-scale label smoothing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3095–3104. IEEE, Long Beach (2019)

    Google Scholar 

  28. Zhang, Z., Jin, W., Xu, J., Cheng, M.-M.: Gradient-induced co-saliency detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 455–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_27

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China under grant 62176062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, Z., Gu, X. (2022). A Unified Multiple Inducible Co-attentions and Edge Guidance Network for Co-saliency Detection. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13529. Springer, Cham. https://doi.org/10.1007/978-3-031-15919-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15919-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15918-3

  • Online ISBN: 978-3-031-15919-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics