Abstract
The of a planar graph G is the smallest number of line segments needed for a planar straight-line drawing of G. Dujmović, Eppstein, Suderman, and Wood [CGTA’07] introduced this measure for the visual complexity of graphs. There are optimal algorithms for trees and worst-case optimal algorithms for outerplanar graphs, 2-trees, and planar 3-trees. It is known that every cubic triconnected planar n-vertex graph (except \(K_4\)) has segment number \(n/2+3\), which is the only known universal lower bound for a meaningful class of planar graphs.
We show that every triconnected planar 4-regular graph can be drawn using at most \(n+3\) segments. This bound is tight up to an additive constant, improves a previous upper bound of \(7n/4+2\) implied by a more general result of Dujmović et al., and supplements the result for cubic graphs. We also give a simple optimal algorithm for cactus graphs, generalizing the above-mentioned result for trees. We prove the first linear universal lower bounds for outerpaths, maximal outerplanar graphs, 2-trees, and planar 3-trees. This shows that the existing algorithms for these graph classes are constant-factor approximations. For maximal outerpaths, our bound is best possible and can be generalized to circular arcs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A is a connected graph where any two simple cycles share at most one vertex.
References
Adnan, M.A.: Minimum segment drawings of outerplanar graphs. Master’s thesis, Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka (2008). http://lib.buet.ac.bd:8080/xmlui/bitstream/handle/123456789/1565/Full%20%20Thesis%20.pdf?sequence=1 &isAllowed=y
Broersma, H.J., Duijvestijn, A.J.W., Göbel, F.: Generating all 3-connected 4-regular planar graphs from the octahedron graph. J. Graph Theory 17(5), 613–620 (1993). https://doi.org/10.1002/jgt.3190170508
Chaplick, Steven, Fleszar, Krzysztof, Lipp, Fabian, Ravsky, Alexander, Verbitsky, Oleg, Wolff, Alexander: The complexity of drawing graphs on few lines and few planes. In: Ellen, F., Kolokolova, A., Sack, J.-R. (eds.) WADS 2017. LNCS, vol. 10389, pp. 265–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_23
Chaplick, S., Fleszar, K., Lipp, F., Ravsky, A., Verbitsky, O., Wolff, A.: Drawinggraphs on few lines and few planes. J. Comput. Geom 11(1), 433–475 (2020). https://doi.org/10.20382/jocg.v11i1a17
Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212 (2007). https://doi.org/10.1016/j.comgeo.2006.09.002
Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. Comput. Geom. Theory Appl. 77, 27–39 (2019). https://doi.org/10.1016/j.comgeo.2018.02.003
Goeßmann, I., et al.: The segment number: Algorithms and universal lower bounds for some classes of planar graphs. arXiv preprint (2022). https://arxiv.org/abs/2202.11604
Hong, S., Nagamochi, H.: Convex drawings of graphs with non-convex boundary constraints. Discret. Appl. Math. 156(12), 2368–2380 (2008). https://doi.org/10.1016/j.dam.2007.10.012
Hong, S., Nagamochi, H.: Convex drawings of hierarchical planar graphs and clustered planar graphs. J. Discrete Algorithms 8(3), 282–295 (2010). https://doi.org/10.1016/j.jda.2009.05.003
Hültenschmidt, G., Kindermann, P., Meulemans, W., Schulz, A.: Drawing planar graphs with few geometric primitives. J. Graph Alg. Appl. 22(2), 357–387 (2018). https://doi.org/10.7155/jgaa.00473
Igamberdiev, A., Meulemans, W., Schulz, A.: Drawing planar cubic 3-connected graphs with few segments: Algorithms & experiments. J. Graph Algorithms Appl. 21(4), 561–588 (2017). https://doi.org/10.7155/jgaa.00430
Kindermann, P., Mchedlidze, T., Schneck, T., Symvonis, A.: Drawing planar graphs with few segments on a polynomial grid. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 416–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_32
Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessibility of drawings with few segments. J. Graph Alg. Appl. 22(3), 501–518 (2018). https://doi.org/10.7155/jgaa.00474
Kleist, L., Klemz, B., Lubiw, A., Schlipf, L., Staals, F., Strash, D.: Convexity-increasing morphs of planar graphs. Comput. Geom. 84, 69–88 (2019). https://doi.org/10.1016/j.comgeo.2019.07.007
Klemz, B.: Convex drawings of hierarchical graphs in linear time, with applications to planar graph morphing. In: Mutzel, P., Pagh, R., Herman, G., (eds.) Proceedings of 29th Annual European Symposium on Algorithms (ESA 2021), vol. 204 of LIPIcs, pp. 57:1–57:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.57
Kryven, M., Ravsky, A., Wolff, A.: Drawing graphs on few circles and few spheres. J. Graph Alg. Appl. 23(2), 371–391 (2019). https://doi.org/10.7155/jgaa.00495
Mondal, D., Nishat, R.I., Biswas, S., Rahman, M.: Minimum-segment convex drawings of 3-connected cubic plane graphs. J. Comb. Optim. 25(3), 460–480 (2013). https://doi.org/10.1007/s10878-011-9390-6
Okamoto, Y., Ravsky, A., Wolff, A.: Variants of the segment number of a graph. In: Archambault, D., Tóth, C.D. (eds.) GD 2019. LNCS, vol. 11904, pp. 430–443. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35802-0_33
Samee, M.A.H., Alam, M.J., Adnan, M.A., Rahman, M.S.: Minimum segment drawings of series-parallel graphs with the maximum degree three. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 408–419. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00219-9_40
Schulz, A.: Drawing graphs with few arcs. J. Graph Alg. Appl. 19(1), 393–412 (2015). https://doi.org/10.7155/jgaa.00366
Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R., (eds.) Progress in Graph Theory, pp. 43–69. Academic Press (1984)
Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. s3–10(1), 304–320 (1960). https://doi.org/10.1112/plms/s3-10.1.304
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Goeßmann, I. et al. (2022). The Segment Number: Algorithms and Universal Lower Bounds for Some Classes of Planar Graphs. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)