Skip to main content

Extending Partial Representations of Circular-Arc Graphs

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Abstract

The partial representation extension problem generalizes the recognition problem for classes of graphs defined in terms of geometric representations. We consider this problem for circular-arc graphs, where several arcs are predrawn and we ask whether this partial representation can be completed. We show that this problem is NP-complete for circular-arc graphs, answering a question of Klavík et al. (2014).

We complement this hardness with tractability results of the representation extension problem for various subclasses of circular-arc graphs. We give linear-time algorithms for extending normal proper Helly and proper Helly representations. For normal Helly circular-arc representations we give an \(\mathcal{O}(n^3)\)-time algorithm where n is the number of vertices.

Surprisingly, for Helly representations, the complexity hinges on the seemingly irrelevant detail of whether the predrawn arcs have distinct or non-distinct endpoints: In the former case the algorithm for normal Helly circular-arc representations can be extended, whereas the latter case turns out to be \(\textsf{NP}\)-complete. We also prove that the partial representation extension problem for unit circular-arc graphs is NP-complete.

Funded by the grant 19-17314J of the GA ČR and by grant Ru 1903/3-1 of the German Science Foundation (DFG). Peter Zeman was also supported by the Swiss National Science Foundation project PP00P2-202667.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelini, P., et al.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32:1–32:42 (2015)

    Google Scholar 

  2. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms (TALG) 12(2), 1–46 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Bok, J., Jedličková, N.: A note on simultaneous representation problem for interval and circular-arc graphs. arXiv preprint arXiv:1811.04062 (2018)

  4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  Google Scholar 

  5. Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: extending a partial representation is hard. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_12

    Chapter  Google Scholar 

  6. Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. J. Graph Theory 91(4), 365–394 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chaplick, S., Kindermann, P., Klawitter, J., Rutter, I., Wolff, A.: Extending partial representations of rectangular duals with given contact orientations. arXiv preprint arXiv:2102.02013 (2021)

  8. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)

    Article  MathSciNet  Google Scholar 

  9. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)

    Article  MathSciNet  Google Scholar 

  10. Galil, Z., Meggido, N.: Cyclic ordering is NP-complete. Theoret. Comput. Sci. 5, 179–182 (1977)

    Article  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)

    Article  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discret. Methods 1(2), 216–227 (1980)

    Article  MathSciNet  Google Scholar 

  13. Gavril, F.: Algorithms on circular-arc graphs. Networks 4(4), 357–369 (1974)

    Article  MathSciNet  Google Scholar 

  14. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)

    Article  MathSciNet  Google Scholar 

  15. Hsu, W.L.: Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM J. Comput. 14(1), 224–231 (1985)

    Article  MathSciNet  Google Scholar 

  16. Hsu, W.L., McConnell, R.M.: PC trees and circular-ones arrangements. Theoret. Comput. Sci. 296(1), 99–116 (2003)

    Article  MathSciNet  Google Scholar 

  17. Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013)

    Article  MathSciNet  Google Scholar 

  18. Joeris, B.L., Lin, M.C., McConnell, R.M., Spinrad, J.P., Szwarcfiter, J.L.: Linear-time recognition of Helly circular-arc models and graphs. Algorithmica 59(2), 215–239 (2011)

    Article  MathSciNet  Google Scholar 

  19. Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_58

    Chapter  Google Scholar 

  20. Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2017)

    Article  MathSciNet  Google Scholar 

  21. Klavík, P., et al.: Extending partial representations of proper and unit interval graphs. CoRR abs/1207.6960 (2012). https://arxiv.org/abs/1207.6960

  22. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. Theoret. Comput. Sci. 576, 85–101 (2015)

    Article  MathSciNet  Google Scholar 

  23. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of interval graphs. Algorithmica 78(3), 945–967 (2017)

    Article  MathSciNet  Google Scholar 

  24. Krawczyk, T., Walczak, B.: Extending partial representations of trapezoid graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 358–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_27

    Chapter  Google Scholar 

  25. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Proper Helly circular-arc graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 248–257. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-7_24

    Chapter  Google Scholar 

  26. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and its subclasses. Discret. Appl. Math. 161(7–8), 1037–1059 (2013)

    Article  MathSciNet  Google Scholar 

  27. Lin, M.C., Szwarcfiter, J.L.: Characterizations and linear time recognition of Helly circular-arc graphs. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 73–82. Springer, Heidelberg (2006). https://doi.org/10.1007/11809678_10

    Chapter  Google Scholar 

  28. Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc graphs and subclasses: a survey. Discret. Math. 309(18), 5618–5635 (2009). Combinatorics 2006, A Meeting in Celebration of Pavol Hell 's 60th Birthday (1–5 May 2006)

    Article  MathSciNet  Google Scholar 

  29. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)

    Article  MathSciNet  Google Scholar 

  30. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006)

    Article  MathSciNet  Google Scholar 

  31. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MathSciNet  Google Scholar 

  32. Tucker, A.: Matrix characterizations of circular-arc graphs. Pac. J. Math. 39, 535–545 (1971)

    Article  MathSciNet  Google Scholar 

  33. Tucker, A.: Structure theorems for some circular-arc graphs. Discret. Math. 7(1–2), 167–195 (1974)

    Article  MathSciNet  Google Scholar 

  34. Tucker, A.: An efficient test for circular-arc graphs. SIAM J. Comput. 9(1), 1–24 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We thank Bartosz Walczak for inspiring comments, in particular for his hint to extend Theorem 1 to the case of \(\textsf{CAR}\) with distinct endpoints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Stumpf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fiala, J., Rutter, I., Stumpf, P., Zeman, P. (2022). Extending Partial Representations of Circular-Arc Graphs. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics