Abstract
The partial representation extension problem generalizes the recognition problem for classes of graphs defined in terms of geometric representations. We consider this problem for circular-arc graphs, where several arcs are predrawn and we ask whether this partial representation can be completed. We show that this problem is NP-complete for circular-arc graphs, answering a question of Klavík et al. (2014).
We complement this hardness with tractability results of the representation extension problem for various subclasses of circular-arc graphs. We give linear-time algorithms for extending normal proper Helly and proper Helly representations. For normal Helly circular-arc representations we give an \(\mathcal{O}(n^3)\)-time algorithm where n is the number of vertices.
Surprisingly, for Helly representations, the complexity hinges on the seemingly irrelevant detail of whether the predrawn arcs have distinct or non-distinct endpoints: In the former case the algorithm for normal Helly circular-arc representations can be extended, whereas the latter case turns out to be \(\textsf{NP}\)-complete. We also prove that the partial representation extension problem for unit circular-arc graphs is NP-complete.
Funded by the grant 19-17314J of the GA ČR and by grant Ru 1903/3-1 of the German Science Foundation (DFG). Peter Zeman was also supported by the Swiss National Science Foundation project PP00P2-202667.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelini, P., et al.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32:1–32:42 (2015)
Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms (TALG) 12(2), 1–46 (2015)
Bok, J., Jedličková, N.: A note on simultaneous representation problem for interval and circular-arc graphs. arXiv preprint arXiv:1811.04062 (2018)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)
Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: extending a partial representation is hard. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_12
Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. J. Graph Theory 91(4), 365–394 (2019)
Chaplick, S., Kindermann, P., Klawitter, J., Rutter, I., Wolff, A.: Extending partial representations of rectangular duals with given contact orientations. arXiv preprint arXiv:2102.02013 (2021)
Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)
Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)
Galil, Z., Meggido, N.: Cyclic ordering is NP-complete. Theoret. Comput. Sci. 5, 179–182 (1977)
Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)
Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of coloring circular arcs and chords. SIAM J. Algebraic Discret. Methods 1(2), 216–227 (1980)
Gavril, F.: Algorithms on circular-arc graphs. Networks 4(4), 357–369 (1974)
Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Ser. B 16(1), 47–56 (1974)
Hsu, W.L.: Maximum weight clique algorithms for circular-arc graphs and circle graphs. SIAM J. Comput. 14(1), 224–231 (1985)
Hsu, W.L., McConnell, R.M.: PC trees and circular-ones arrangements. Theoret. Comput. Sci. 296(1), 99–116 (2003)
Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013)
Joeris, B.L., Lin, M.C., McConnell, R.M., Spinrad, J.P., Szwarcfiter, J.L.: Linear-time recognition of Helly circular-arc models and graphs. Algorithmica 59(2), 215–239 (2011)
Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_58
Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2017)
Klavík, P., et al.: Extending partial representations of proper and unit interval graphs. CoRR abs/1207.6960 (2012). https://arxiv.org/abs/1207.6960
Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. Theoret. Comput. Sci. 576, 85–101 (2015)
Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of interval graphs. Algorithmica 78(3), 945–967 (2017)
Krawczyk, T., Walczak, B.: Extending partial representations of trapezoid graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 358–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_27
Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Proper Helly circular-arc graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 248–257. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-7_24
Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and its subclasses. Discret. Appl. Math. 161(7–8), 1037–1059 (2013)
Lin, M.C., Szwarcfiter, J.L.: Characterizations and linear time recognition of Helly circular-arc graphs. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 73–82. Springer, Heidelberg (2006). https://doi.org/10.1007/11809678_10
Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc graphs and subclasses: a survey. Discret. Math. 309(18), 5618–5635 (2009). Combinatorics 2006, A Meeting in Celebration of Pavol Hell 's 60th Birthday (1–5 May 2006)
McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)
Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)
Tucker, A.: Matrix characterizations of circular-arc graphs. Pac. J. Math. 39, 535–545 (1971)
Tucker, A.: Structure theorems for some circular-arc graphs. Discret. Math. 7(1–2), 167–195 (1974)
Tucker, A.: An efficient test for circular-arc graphs. SIAM J. Comput. 9(1), 1–24 (1980)
Acknowledgement
We thank Bartosz Walczak for inspiring comments, in particular for his hint to extend Theorem 1 to the case of \(\textsf{CAR}\) with distinct endpoints.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Fiala, J., Rutter, I., Stumpf, P., Zeman, P. (2022). Extending Partial Representations of Circular-Arc Graphs. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)