Abstract
We consider generalizations of the \(k\) -Center problem in graphs of low doubling and highway dimension. For the Capacitated \(k\) -Supplier with Outliers (CkSwO) problem, we show an efficient parameterized approximation scheme (EPAS) when the parameters are \(k\), the number of outliers and the doubling dimension of the supplier set. On the other hand, we show that for the Capacitated \(k\) -Center problem, which is a special case of CkSwO, obtaining a parameterized approximation scheme (PAS) is \(\mathrm {W[1]}\)-hard when the parameters are \(k\), and the highway dimension. This is the first known example of a problem for which it is hard to obtain a PAS for highway dimension, while simultaneously admitting an EPAS for doubling dimension.
Keywords
- Capacitated \(k\)-Supplier with Outliers
- Highway dimension
- Doubling dimension
- Parameterized approximation
Andreas Emil Feldmann was supported by the project 19-27871X of GA ČR. Tung Anh Vu was supported by the project 22-22997S of GA ČR.
This is a preview of subscription content, access via your institution.
Buying options


Notes
- 1.
See [19, Section 9] for a discussion. In essence, the highway dimension of a given graph can vary depending on the selection of \(\gamma \).
- 2.
See [13] or the full version of the paper for a formal definition.
- 3.
We remark that for this distinction to work, one has to be careful of the used definition of highway dimension: a stricter definition of highway dimension from [1] already implies bounded doubling dimension. On the other hand, for certain types of transportation networks, it can be argued that the doubling dimension is large, while the highway dimension is small. See [22, Appendix A] for a detailed discussion.
References
Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension and provably efficient shortest path algorithms. J. ACM (JACM) 63(5), 1–26 (2016)
Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pp. 782–793. SIAM (2010)
Ahmadi-Javid, A., Seyedi, P., Syam, S.S.: A survey of healthcare facility location. Comput. Oper. Res. 79, 223–263 (2017). https://doi.org/10.1016/j.cor.2016.05.018, https://www.sciencedirect.com/science/article/pii/S0305054816301253
An, H.C., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V., Svensson, O.: Centrality of trees for capacitated k-center. Math. Program. 154(1–2), 29–53 (2015). https://doi.org/10.1007/s10107-014-0857-y
Bast, H., Funke, S., Matijevic, D.: Transit ultrafast shortest-path queries with linear-time preprocessing. 9th DIMACS Implementation Challenge [1] (2006)
Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: 2007 Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 46–59. SIAM (2007)
Becker, A., Klein, P.N., Saulpic, D.: Polynomial-time approximation schemes for k-center, k-median, and capacitated vehicle routing in bounded highway dimension. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 112, pp. 8:1–8:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018)
Blum, J.: Hierarchy of transportation network parameters and hardness results. In: Jansen, B.M.P., Telle, J.A. (eds.) 14th International Symposium on Parameterized and Exact Computation (IPEC 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 148, pp. 4:1–4:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019)
Bodlaender, H.L., Lokshtanov, D., Penninkx, E.: Planar capacitated dominating set is W[1]-Hard. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 50–60. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_4
Chakrabarty, D., Goyal, P., Krishnaswamy, R.: The non-uniform k-center problem. ACM Trans. Algorithms 16(4) (2020). https://doi.org/10.1145/3392720
Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: SODA, vol. 1, pp. 642–651 (2001)
Cohen-Addad, V., Feldmann, A.E., Saulpic, D.: Near-linear time approximation schemes for clustering in doubling metrics. J. ACM 68(6), 1–34 (2021). https://doi.org/10.1145/3477541
Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Cygan, M., Hajiaghayi, M., Khuller, S.: LP rounding for k-centers with non-uniform hard capacities. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 273–282. IEEE (2012)
Cygan, M., Kociumaka, T.: Constant factor approximation for capacitated k-center with outliers. In: Mayr, E.W., Portier, N. (eds.) 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), vol. 25, pp. 251–262. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2014). https://doi.org/10.4230/LIPIcs.STACS.2014.251, https://drops.dagstuhl.de/opus/volltexte/2014/4462
Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_9
Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 434–444. STOC 1988, Association for Computing Machinery, New York, NY, USA (1988). https://doi.org/10.1145/62212.62255,https://doi.org/10.1145/62212.62255
Feldmann, A.E.: Fixed-parameter approximations for k-center problems in low highway dimension graphs. Algorithmica 81(3), 1031–1052 (2019). https://doi.org/10.1007/s00453-018-0455-0
Feldmann, A.E., Fung, W.S., Konemann, J., Post, I.: A (1+\(\varepsilon \))-embedding of low highway dimension graphs into bounded treewidth graphs. SIAM J. Comput. 47(4), 1667–1704 (2018)
Feldmann, A.E., Karthik, C., Lee, E., Manurangsi, P.: A survey on approximation in parameterized complexity: hardness and algorithms. Algorithms 13(6), 146 (2020)
Feldmann, A.E., Marx, D.: The parameterized hardness of the k-center problem in transportation networks. Algorithmica 82(7), 1989–2005 (2020). https://doi.org/10.1007/s00453-020-00683-w
Feldmann, A.E., Saulpic, D.: Polynomial time approximation schemes for clustering in low highway dimension graphs. J. Comput. Syst. Sci. 122, 72–93 (2021). https://doi.org/10.1016/j.jcss.2021.06.002, https://www.sciencedirect.com/science/article/pii/S0022000021000647
Goyal, D., Jaiswal, R.: Tight FPT approximation for constrained k-center and k-supplier. CoRR abs/2110.14242 (2021). https://arxiv.org/abs/2110.14242
Gupta, A., Krauthgamer, R., Lee, J.: Bounded geometries, fractals, and low-distortion embeddings. In: 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings, pp. 534–543. IEEE (2003)
Harris, D.G., Pensyl, T., Srinivasan, A., Trinh, K.: A lottery model for center-type problems with outliers. ACM Trans. Algorithms 15(3) (2019). https://doi.org/10.1145/3311953
Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)
Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986). https://doi.org/10.1145/5925.5933
Katsikarelis, I., Lampis, M., Paschos, V.T.: Structural parameters, tight bounds, and approximation for (k, r)-center. Discret. Appl. Math. 264, 90–117 (2019)
Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, pp. 281–290. STOC 2004, Association for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/1007352.1007399
Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04565-7
Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithmsd. Cambridge University Press, Cambridge (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Feldmann, A.E., Vu, T.A. (2022). Generalized \(k\)-Center: Distinguishing Doubling and Highway Dimension. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-15914-5_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15913-8
Online ISBN: 978-3-031-15914-5
eBook Packages: Computer ScienceComputer Science (R0)