Skip to main content

Trigger-Assisted Ambidextrous Control Framework for Teleoperation of Two Legged Manipulators

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13546))

Included in the following conference series:

  • 861 Accesses

Abstract

This paper presents a motion-capture based control framework for the purpose of effectively teleoperating two legged manipulators without significant delays caused by the switching of controllers. The control framework generates high-level trajectories in 6 degrees of freedom and uses finger gesture detection to act as triggers in selecting which robot to control as well as toggling various aspects of control such as yaw rotation of the quadruped platform. The functionality and ease of use of the control framework are demonstrated through a real-life experiment where the operator controls two quadrupedal manipulator robots to open a spray can. The experiment was successfully accomplished by the proposed teleoperation framework.

This work was supported by the Engineering and Physical Sciences Research Council [grant numbers EP/R513258/1-2441459, EP/V026801/2], the Advanced Machinery and Productivity Institute [Innovate UK project number 84646] and the China Scholarship Council [grant number (2020)06120186].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The experiment video can be found at https://youtu.be/TApk6XrgYhY.

References

  1. Arduengo, M., Arduengo, A., Colome, A., Lobo-Prat, J., Torras, C.: Human to robot whole-body motion transfer. In: IEEE-RAS International Conference on Humanoid Robots, pp. 299–305 (07 2021). https://doi.org/10.1109/HUMANOIDS47582.2021.9555769

  2. Bellicoso, C.D., et al.: Alma - articulated locomotion and manipulation for a torque-controllable robot. In: International Conference on Robotics and Automation, pp. 8477–8483 (2019). https://doi.org/10.1109/ICRA.2019.8794273

  3. Brosque, C., Herrero, E., Chen, Y., Joshi, R., Khatib, O., Fischer, M.: Collaborative welding and joint sealing robots with haptic feedback. In: International Symposium on Automation and Robotics in Construction, vol. 38, pp. 1–8 (2021). https://doi.org/10.22260/ISARC2021/0003

  4. Coelho, A., et al.: Whole-body teleoperation and shared control of redundant robots with applications to aerial manipulation. J. Intell. Robot. Syst. 102(1), 1–22 (2021). https://doi.org/10.1007/s10846-021-01365-7

    Article  Google Scholar 

  5. Dalin, E., Bergonzani, I., Anne, T., Ivaldi, S., Mouret, J.B.: Whole-body teleoperation of the Talos humanoid robot: preliminary results. In: ICRA Workshop on Teleoperation of Dynamic Legged Robots in Real Scenarios. Xi’an, China (2021). https://hal.inria.fr/hal-03245005

  6. Farkhatdinov, I., Ryu, J.H.: Hybrid position-position and position-speed command strategy for the bilateral teleoperation of a mobile robot. In: International Conference on Control, Automation and Systems, pp. 2442–2447 (2007). https://doi.org/10.1109/ICCAS.2007.4406773

  7. Humphreys, J., Peers, C., Wan, Y., Richardson, R., Zhou, C.: Teleoperation of a legged manipulator for item disposal. In: UK Robotics and Autonomous Systems Conference (2022)

    Google Scholar 

  8. Ishiguro, Y., et al.: High speed whole body dynamic motion experiment with real time master-slave humanoid robot system. In: IEEE International Conference on Robotics and Automation, pp. 5835–5841 (2018). https://doi.org/10.1109/ICRA.2018.8461207

  9. Kitagawa, S., Hasegawa, S., Yamaguchi, N., Okada, K., Inaba, M.: Miniature tangible cube: concept and design of target-object-oriented user interface for dual-arm telemanipulation. IEEE Robot. Autom. Lett. 6(4), 6977–6984 (2021). https://doi.org/10.1109/LRA.2021.3096475

    Article  Google Scholar 

  10. Koenemann, J., Burget, F., Bennewitz, M.: Real-time imitation of human whole-body motions by humanoids. In: IEEE International Conference on Robotics and Automation, pp. 2806–2812 (2014). https://doi.org/10.1109/ICRA.2014.6907261

  11. Peers, C., Kanoulas, D., Kaddouh, B., Richardson, R., Zhou, C.: Dynamic camera usage in mobile teleoperation system for buzz wire task. In: UK Robotics and Autonomous Systems Conference (2022)

    Google Scholar 

  12. Peers, C., Motawei, M., Richardson, R., Zhou, C.: Development of a teleoperative quadrupedal manipulator. In: UK Robotics and Autonomous Systems Conference, pp. 17–18. Hatfield, UK (June 2 2021). https://doi.org/10.31256/Hy7Sf7G

  13. Penco, L., Scianca, N., Modugno, V., Lanari, L., Oriolo, G., Ivaldi, S.: A multimode teleoperation framework for humanoid loco-manipulation: an application for the icub robot. IEEE Robot. Autom. Mag. 26(4), 73–82 (2019). https://doi.org/10.1109/MRA.2019.2941245

    Article  Google Scholar 

  14. Ur Rehman, B., Focchi, M., Lee, J., Dallali, H., Caldwell, D., Semini, C.: Towards a multi-legged mobile manipulator. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 3618–3624 (05 2016). https://doi.org/10.1109/ICRA.2016.7487545

  15. Wan, Y., Sun, J., Peers, C., Humphreys, J., Kanoulas, D., Zhou, C.: Performance and usability evaluation scheme for mobile manipulator teleoperation (2022)

    Google Scholar 

  16. Wang, S., Murphy, K., Kenney, D., Ramos, J.: A comparison between joint space and task space mappings for dynamic teleoperation of an anthropomorphic robotic arm in reaction tests (2020)

    Google Scholar 

  17. Wang, S., Ramos, J.: Dynamic locomotion teleoperation of a wheeled humanoid robot reduced model with a whole-body human-machine interface (2021)

    Google Scholar 

  18. Wu, Y., Balatti, P., Lorenzini, M., Zhao, F., Kim, W., Ajoudani, A.: A teleoperation interface for loco-manipulation control of mobile collaborative robotic assistant. IEEE Robot. Autom. Lett. 4(4), 3593–3600 (2019). https://doi.org/10.1109/LRA.2019.2928757

    Article  Google Scholar 

  19. Wu, Y., Lamon, E., Zhao, F., Kim, W., Ajoudani, A.: Unified approach for hybrid motion control of moca based on weighted whole-body cartesian impedance formulation. IEEE Robotics and Automation Letters 6(2), 3505–3512 (2021). https://doi.org/10.1109/LRA.2021.3062316

    Article  Google Scholar 

  20. Xin, G., Smith, J., Rytz, D., Wolfslag, W., Lin, H.C., Mistry, M.: Bounded haptic teleoperation of a quadruped robot’s foot posture for sensing and manipulation. In: IEEE International Conference on Robotics and Automation, pp. 1431–1437 (2020). https://doi.org/10.1109/ICRA40945.2020.9197501

  21. Zhou, C., Fang, C., Wang, X., Li, Z., Tsagarakis, N.: A generic optimization-based framework for reactive collision avoidance in bipedal locomotion. In: IEEE International Conference on Automation Science and Engineering, pp. 1026–1033 (2016). https://doi.org/10.1109/COASE.2016.7743516

  22. Zimmermann, S., Poranne, R., Coros, S.: Go fetch! - dynamic grasps using Boston dynamics spot with external robotic arm. In: IEEE International Conference on Robotics and Automation, pp. 4488–4494 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxu Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peers, C. et al. (2022). Trigger-Assisted Ambidextrous Control Framework for Teleoperation of Two Legged Manipulators. In: Pacheco-Gutierrez, S., Cryer, A., Caliskanelli, I., Tugal, H., Skilton, R. (eds) Towards Autonomous Robotic Systems. TAROS 2022. Lecture Notes in Computer Science(), vol 13546. Springer, Cham. https://doi.org/10.1007/978-3-031-15908-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15908-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15907-7

  • Online ISBN: 978-3-031-15908-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics