Skip to main content

Trends in Electroanalytical Assays for COVID-19 Diagnosis

  • Chapter
  • First Online:
COVID-19 Metabolomics and Diagnosis

Abstract

The use of electrochemical biosensors is highlighted for SARS-CoV-2 detection and COVID-19 diagnosis. In a brief description of virus structure, fundamental features of proteins and nucleic acid are approached for a comprehensive strategy over biosensor designs. Relevant works are described and related to specific structural proteins used as viral biomarkers. Furthermore, the challenges and perspectives are pointed to the evolution of electroanalysis and the establishment of methods comparable to the gold standard, RT-PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.C. Walls, Y.J. Park, M.A. Tortorici, A. Wall, A.T. McGuire, D. Veesler, Structure, function, and antigenicity of the SARS-CoV-2 Spike glycoprotein. Cell 181, 281 (2020). https://doi.org/10.1016/J.CELL.2020.02.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. X.Y. Ge, J.L. Li, X. Lou Yang, A.A. Chmura, G. Zhu, J.H. Epstein, J.K. Mazet, B. Hu, W. Zhang, C. Peng, Y.J. Zhang, C.M. Luo, B. Tan, N. Wang, Y. Zhu, G. Crameri, S.Y. Zhang, L.F. Wang, P. Daszak, Z.L. Shi, Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535 (2013). https://doi.org/10.1038/NATURE12711

  3. P. Zhou, X. Lou Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R. Di Jiang, M.Q. Liu, Y. Chen, X.R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F.X. Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798), 270–273 (2020). https://doi.org/10.1038/s41586-020-2012-7

  4. J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, Q. Zhang, X. Shi, Q. Wang, L. Zhang, X. Wang, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807), 215–220 (2020). https://doi.org/10.1038/s41586-020-2180-5

  5. Y. Wan, J. Shang, R. Graham, R.S. Baric, F. Li, Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol. 94 (2020). https://doi.org/10.1128/JVI.00127-20/ASSET/EA9A0885-A970-4B62-B79A-99D6CA7D96E0/ASSETS/GRAPHIC/JVI.00127-20-F0004.JPEG

  6. L. Kuo, K.R. Hurst, P.S. Masters, Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J. Virol. 81, 2249–2262 (2007). https://doi.org/10.1128/JVI.01577-06/ASSET/6B3DC561-FE54-4049-AB4A-94E0CA5237C7/ASSETS/GRAPHIC/ZJV0050788110008.JPEG

    Article  CAS  PubMed  Google Scholar 

  7. B.G. Hogue, C.E. Machamer, Coronavirus structural proteins and virus assembly. Nidoviruses 179–200 (2014). https://doi.org/10.1128/9781555815790.CH12

  8. C. Verdiá-Báguena, J.L. Nieto-Torres, A. Alcaraz, M.L. Dediego, L. Enjuanes, V.M. Aguilella, Analysis of SARS-CoV E protein ion channel activity by tuning the protein and lipid charge. Biochim. Biophys. Acta. 2013, 2026–2031 (1828). https://doi.org/10.1016/J.BBAMEM.2013.05.008

    Article  Google Scholar 

  9. Y. Du, F.A. Zuckermann, D. Yoo, Myristoylation of the small envelope protein of porcine reproductive and respiratory syndrome virus is non-essential for virus infectivity but promotes its growth. Virus Res. 147, 294 (2010). https://doi.org/10.1016/J.VIRUSRES.2009.11.016

    Article  CAS  PubMed  Google Scholar 

  10. Q. Wu, Y. Zhang, H. Lü, J. Wang, X. He, Y. Liu, C. Ye, W. Lin, J. Hu, J. Ji, J. Xu, J. Ye, Y. Hu, W. Chen, S. Li, J. Wang, J. Wang, S. Bi, H. Yang, The E protein is a multifunctional membrane protein of SARS-CoV, Genomics. Proteom. Bioinform. 1, 131–144 (2003). https://doi.org/10.1016/S1672-0229(03)01017-9

    Article  CAS  Google Scholar 

  11. J.L. Nieto-Torres, M.L. DeDiego, C. Verdiá-Báguena, J.M. Jimenez-Guardeño, J.A. Regla-Nava, R. Fernandez-Delgado, C. Castaño-Rodriguez, A. Alcaraz, J. Torres, V.M. Aguilella, L. Enjuanes, Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLOS Pathog. 10, e1004077 (2014). https://doi.org/10.1371/JOURNAL.PPAT.1004077

    Article  PubMed  PubMed Central  Google Scholar 

  12. Y. Li, W. Surya, S. Claudine, J. Torres, Structure of a conserved Golgi complex-targeting signal in coronavirus envelope proteins. J. Biol. Chem. 289, 12535–12549 (2014). https://doi.org/10.1074/JBC.M114.560094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. T.R. Ruch, C.E. Machamer, The coronavirus E protein: assembly and beyond, viruses 4, 363–382 (2012). https://doi.org/10.3390/V4030363

  14. J.R. Cohen, L.D. Lin, C.E. Machamer, Identification of a golgi complex-targeting signal in the cytoplasmic tail of the severe acute respiratory syndrome coronavirus envelope protein. J. Virol. 85, 5794–5803 (2011). https://doi.org/10.1128/JVI.00060-11/ASSET/B6CCA532-3E5F-439C-B1AA-8C4908FE6D72/ASSETS/GRAPHIC/ZJV9990946100008.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. E. Corse, C.E. Machamer, The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J. Virol. 76, 1273–1284 (2002). https://doi.org/10.1128/JVI.76.3.1273-1284.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L.A. Lopez, A.J. Riffle, S.L. Pike, D. Gardner, B.G. Hogue, Importance of conserved cysteine residues in the coronavirus envelope protein. J. Virol. 82, 3000–3010 (2008). https://doi.org/10.1128/JVI.01914-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. C.T. Keng, S. Åkerström, C.S.W. Leung, L.L.M. Poon, J.S.M. Peiris, A. Mirazimi, Y.J. Tan, SARS coronavirus 8b reduces viral replication by down-regulating E via an ubiquitin-independent proteasome pathway. Microbes Infect. 13, 179–188 (2011). https://doi.org/10.1016/J.MICINF.2010.10.017

    Article  CAS  PubMed  Google Scholar 

  18. E. Álvarez, M.L. DeDiego, J.L. Nieto-Torres, J.M. Jiménez-Guardeño, L. Marcos-Villar, L. Enjuanes, The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology 402, 281–291 (2010). https://doi.org/10.1016/J.VIROL.2010.03.015

    Article  PubMed  Google Scholar 

  19. E. Mortola, P. Roy, Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576, 174–178 (2004). https://doi.org/10.1016/J.FEBSLET.2004.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K.P. Lim, D.X. Liu, The missing link in coronavirus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J. Biol. Chem. 276, 17515–17523 (2001). https://doi.org/10.1074/JBC.M009731200

  21. K. Pervushin, E. Tan, K. Parthasarathy, X. Lin, F.L. Jiang, D. Yu, A. Vararattanavech, W.S. Tuck, X.L. Ding, J. Torres, Structure and inhibition of the SARS coronavirus envelope protein ion channel. PLOS Pathog. 5, e1000511 (2009). https://doi.org/10.1371/JOURNAL.PPAT.1000511

    Article  PubMed  PubMed Central  Google Scholar 

  22. M.A. Tortorici, D. Veesler, Structural insights into coronavirus entry. Adv. Virus Res. 105, 93–116 (2019). https://doi.org/10.1016/BS.AIVIR.2019.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Y. Yang, Z. Xiong, S. Zhang, Y. Yan, J. Nguyen, B. Ng, H. Lu, J. Brendese, F. Yang, H. Wang, X.F. Yang, Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem. J. 392, 135–143 (2005). https://doi.org/10.1042/BJ20050698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. K.T. Teoh, Y.L. Siu, W.L. Chan, M.A. Schlüter, C.J. Liu, J.S.M. Peiris, R. Bruzzone, B. Margolis, B. Nal, The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol. Biol. Cell. 21, 3838–3852 (2010). https://doi.org/10.1091/MBC.E10-04-0338/ASSET/IMAGES/LARGE/ZMK0221096610009.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J.M. Jimenez-Guardeño, J.L. Nieto-Torres, M.L. DeDiego, J.A. Regla-Nava, R. Fernandez-Delgado, C. Castaño-Rodriguez, L. Enjuanes, The PDZ-binding motif of severe acute respiratory syndrome coronavirus envelope protein is a determinant of viral pathogenesis. PLOS Pathog. 10, e1004320 (2014). https://doi.org/10.1371/JOURNAL.PPAT.1004320

    Article  PubMed  PubMed Central  Google Scholar 

  26. D. Schoeman, B.C. Fielding, Coronavirus envelope protein: current knowledge, Virol. J. 161(16), 1–22 (2019). https://doi.org/10.1186/S12985-019-1182-0

  27. J.L. Nieto-Torres, M.L. DeDiego, E. Álvarez, J.M. Jiménez-Guardeño, J.A. Regla-Nava, M. Llorente, L. Kremer, S. Shuo, L. Enjuanes, Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology 415, 69–82 (2011). https://doi.org/10.1016/J.VIROL.2011.03.029

    Article  CAS  PubMed  Google Scholar 

  28. Q. Huang, L. Yu, A.M. Petros, A. Gunasekera, Z. Liu, N. Xu, P. Hajduk, J. Mack, S.W. Fesik, E.T. Olejniczak, Structure of the N-Terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 43, 6059–6063 (2004). https://doi.org/10.1021/BI036155B

    Article  CAS  PubMed  Google Scholar 

  29. S.A. Stohlman, R.S. Baric, G.N. Nelson, L.H. Soe, L.M. Welter, R.J. Deans2, Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 62, 4288–4295 (1988). https://doi.org/10.1128/JVI.62.11.4288-4295.1988

  30. G.W. Nelson, S.A. Stohlman, S.M. Tahara, High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J. Gen. Virol. 81, 181–188 (2000). https://doi.org/10.1099/0022-1317-81-1-181/CITE/REFWORKS

    Article  CAS  PubMed  Google Scholar 

  31. M. Surjit, S.K. Lal, The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect. Genet. Evol. 8, 397–405 (2008). https://doi.org/10.1016/J.MEEGID.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  32. Y.H. Li, J. Li, X.E. Liu, L. Wang, T. Li, Y.H. Zhou, H. Zhuang, Detection of the nucleocapsid protein of severe acute respiratory syndrome coronavirus in serum: comparison with results of other viral markers. J. Virol. Methods. 130, 45–50 (2005). https://doi.org/10.1016/J.JVIROMET.2005.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. M. Surjit, B. Liu, V.T.K. Chow, S.K. Lal, The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J. Biol. Chem. 281, 10669–10681 (2006). https://doi.org/10.1074/JBC.M509233200

    Article  CAS  PubMed  Google Scholar 

  34. F.Q. Li, H. Xiao, J.P. Tam, D.X. Liu, Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS Lett. 579, 2387–2396 (2005). https://doi.org/10.1016/J.FEBSLET.2005.03.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. X. Yan, Q. Hao, Y. Mu, K.A. Timani, L. Ye, Y. Zhu, J. Wu, Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int. J. Biochem. Cell Biol. 38, 1417–1428 (2006). https://doi.org/10.1016/J.BIOCEL.2006.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. P.-K. Hsieh, S.C. Chang, C.-C. Huang, T.-T. Lee, C.-W. Hsiao, Y.-H. Kou, I.-Y. Chen, C.-K. Chang, T.-H. Huang, M.-F. Chang, Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 79, 13848–13855 (2005). https://doi.org/10.1128/JVI.79.22.13848-13855.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. L. Du, G. Zhao, Y. Lin, C. Chan, Y. He, S. Jiang, C. Wu, D.Y. Jin, K.Y. Yuen, Y. Zhou, B.J. Zheng, Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine. 26, 1644–1651 (2008). https://doi.org/10.1016/J.VACCINE.2008.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Kang, M. Yang, Z. Hong, L. Zhang, Z. Huang, X. Chen, S. He, Z. Zhou, Z. Zhou, Q. Chen, Y. Yan, C. Zhang, H. Shan, S. Chen, Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B. 10, 1228 (2020). https://doi.org/10.1016/J.APSB.2020.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Vilar, D.G. Isom, One year of SARS-CoV-2: how much has the virus changed? Biology 10, 91 (2021). https://doi.org/10.3390/BIOLOGY10020091

  40. A.L. Arndt, B.J. Larson, B.G. Hogue, A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J. Virol. 84, 11418–11428 (2010). https://doi.org/10.1128/JVI.01131-10/ASSET/768BA1AF-FED2-4BA9-BEEB-3B634490CC9E/ASSETS/GRAPHIC/ZJV9990938260008.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. Narayanan, A. Maeda, J. Maeda, S. Makino, Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J. Virol. 74, 8127–8134 (2000). https://doi.org/10.1128/JVI.74.17.8127-8134.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Armstrong, H. Niemann, S. Smeekens, P. Rottier, G. Warren, Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature 308, 751–752 (1984). https://doi.org/10.1038/308751a0

  43. C.A.M. de Haan, L. Kuo, P.S. Masters, H. Vennema, P.J.M. Rottier, Coronavirus particle assembly: primary structure requirements of the membrane protein. J. Virol. 72, 6838–6850 (1998). https://doi.org/10.1128/JVI.72.8.6838-6850.1998/FORMAT/EPUB

    Article  PubMed  PubMed Central  Google Scholar 

  44. D. Escors, J. Ortego, H. Laude, L. Enjuanes, The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J. Virol. 75, 1312–1324 (2001). https://doi.org/10.1128/JVI.75.3.1312-1324.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. F. Wu, S. Zhao, B. Yu, Y.M. Chen, W. Wang, Z.G. Song, Y. Hu, Z.W. Tao, J.H. Tian, Y.Y. Pei, M.L. Yuan, Y.L. Zhang, F.H. Dai, Y. Liu, Q.M. Wang, J.J. Zheng, L. Xu, E.C. Holmes, Y.Z. Zhang, A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). https://doi.org/10.1038/s41586-020-2008-3

  46. Y. Hu, J. Wen, L. Tang, H. Zhang, X. Zhang, Y. Li, J. Wang, Y. Han, G. Li, J. Shi, X. Tian, F. Jiang, X. Zhao, J. Wang, S. Liu, C. Zeng, J. Wang, H. Yang, The M protein of SARS-CoV: basic structural and immunological properties, genomics. Proteom. Bioinform. 1, 118–130 (2003). https://doi.org/10.1016/S1672-0229(03)01016-7

    Article  CAS  Google Scholar 

  47. P.S. Masters, The molecular biology of coronaviruses. Adv. Virus Res. 66, 193 (2006). https://doi.org/10.1016/S0065-3527(06)66005-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Hussain, J. Pan, Y. Chen, Y. Yang, J. Xu, Y. Peng, Y. Wu, Z. Li, Y. Zhu, P. Tien, D. Guo, Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol. 79, 5288–5295 (2005). https://doi.org/10.1128/JVI.79.9.5288-5295.2005/ASSET/C5613E8F-8935-4D26-82FA-4C617C92254A/ASSETS/GRAPHIC/ZJV0090561290005.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Jiang, S. Zhang, H. Qin, S. Meng, X. Deng, H. Lin, X. Xin, Y. Liang, B. Chen, Y. Cui, Y.H. Su, P. Liang, G.Z. Zhou, H. Hu, Establishment of a quantitative RT-PCR detection of SARS-CoV-2 virus. Eur. J. Med. Res. 26, 1–7 (2021). https://doi.org/10.1186/S40001-021-00608-5/FIGURES/4

    Article  Google Scholar 

  50. H. Kuang, W. Ma, L. Xu, L. Wang, C. Xu, Nanoscale superstructures assembled by polymerase chain reaction (pcr): programmable construction, structural diversity, and emerging applications. Acc. Chem. Res. 46, 2341–2354 (2013). https://doi.org/10.1021/AR300206M

    Article  CAS  PubMed  Google Scholar 

  51. S. Bustin, A. Coward, G. Sadler, L. Teare, T. Nolan, CoV2-ID, a MIQE-compliant sub-20-min 5-plex RT-PCR assay targeting SARS-CoV-2 for the diagnosis of COVID-19. Sci. Rep. 10 (2020). https://doi.org/10.1038/S41598-020-79233-X

  52. L. Liv, G. Çoban, N. Nakiboğlu, T. Kocagöz, A rapid, ultrasensitive voltammetric biosensor for determining SARS-CoV-2 spike protein in real samples. Biosens. Bioelectron. 192, 113497 (2021). https://doi.org/10.1016/j.bios.2021.113497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Z. Rahmati, M. Roushani, H. Hosseini, H. Choobin, Electrochemical immunosensor with Cu2O nanocube coating for detection of SARS-CoV-2 spike protein. Microchim. Acta. 188, 1–9 (2021). https://doi.org/10.1007/S00604-021-04762-9/TABLES/2

    Article  Google Scholar 

  54. W.A. El-Said, A.S. Al-Bogami, W. Alshitari, Synthesis of gold nanoparticles@reduced porous graphene-modified ITO electrode for spectroelectrochemical detection of SARS-CoV-2 spike protein, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 264, 120237 (2022). https://doi.org/10.1016/J.SAA.2021.120237

    Article  CAS  Google Scholar 

  55. B. Mojsoska, S. Larsen, D.A. Olsen, J.S. Madsen, I. Brandslund, F. Alzahra’a Alatraktchi, Rapid SARS-CoV-2 detection using electrochemical immunosensor, (2021). https://doi.org/10.3390/s21020390

  56. E.B. Aydın, M. Aydın, M.K. Sezgintürk, Highly selective and sensitive sandwich immunosensor platform modified with MUA-capped GNPs for detection of spike receptor binding domain protein: a precious marker of COVID 19 infection. Sens. Actuators B Chem. 345, 130355 (2021). https://doi.org/10.1016/J.SNB.2021.130355

    Article  PubMed  PubMed Central  Google Scholar 

  57. M.A. Ehsan, S.A. Khan, A. Rehman, Screen-Printed Graphene/Carbon Electrodes On Paper Substrates As Impedance Sensors For Detection Of Coronavirus In Nasopharyngeal Fluid Samples. Diagnostics 11, 1030 (2021). https://doi.org/10.3390/DIAGNOSTICS11061030

  58. C. Karaman, B.B. Yola, O. Karaman, N. Atar, İ Polat, M.L. Yola, Sensitive sandwich-type electrochemical SARS-CoV-2 nucleocapsid protein immunosensor. Microchim. Acta. 188, 1–13 (2021). https://doi.org/10.1007/S00604-021-05092-6/FIGURES/6

    Article  Google Scholar 

  59. S. Eissa, H.A. Alhadrami, M. Al-Mozaini, A.M. Hassan, M. Zourob, Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen. Microchim. Acta. 188, 1–10 (2021). https://doi.org/10.1007/S00604-021-04867-1/FIGURES/5

    Article  Google Scholar 

  60. A. Raziq, A. Kidakova, R. Boroznjak, J. Reut, A. Öpik, V. Syritski, Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens. Bioelectron. 178, 113029 (2021). https://doi.org/10.1016/j.bios.2021.113029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. S. Ramanathan, S.C.B. Gopinath, Z.H. Ismail, M.K. Md Arshad, P. Poopalan, Aptasensing nucleocapsid protein on nanodiamond assembled gold interdigitated electrodes for impedimetric SARS-CoV-2 infectious disease assessment. Biosens. Bioelectron. 197, 113735 (2022). https://doi.org/10.1016/J.BIOS.2021.113735

  62. S. Eissa, M. Zourob, Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Anal. Chem. 93, 1826–1833 (2020). https://doi.org/10.1021/ACS.ANALCHEM.0C04719

    Article  PubMed  Google Scholar 

  63. M. Alafeef, K. Dighe, P. Moitra, D. Pan, Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 14, 17028–17045 (2020). https://doi.org/10.1007/S00604-021-04867-1/SUPPL_FILE/NN0C06392_SI_001.PDF

    Article  CAS  PubMed  Google Scholar 

  64. H. Zhao, F. Liu, W. Xie, T.C. Zhou, J. OuYang, L. Jin, H. Li, C.Y. Zhao, L. Zhang, J. Wei, Y.P. Zhang, C.P. Li, Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sens. Actuators B Chem. 327, 128899 (2021). https://doi.org/10.1016/J.SNB.2020.128899

    Article  CAS  PubMed  Google Scholar 

  65. H. Zhao, Y. Zhang, Y. Chen, N.R.Y. Ho, N.R. Sundah, A. Natalia, Y. Liu, Q.H. Miow, Y. Wang, P.A. Tambyah, C.W.M. Ong, H. Shao, Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. Biosens. Bioelectron. 194, 113629 (2021). https://doi.org/10.1016/J.BIOS.2021.113629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. K.Y.P.S. Avelino, G.S. dos Santos, I.A.M. Frías, A.G. Silva-Junior, M.C. Pereira, M.G.R. Pitta, B.C. de Araújo, A. Errachid, M.D.L. Oliveira, C.A.S. Andrade, Nanostructured sensor platform based on organic polymer conjugated to metallic nanoparticle for the impedimetric detection of SARS-CoV-2 at various stages of viral infection. J. Pharm. Biomed. Anal. 206, 114392 (2021). https://doi.org/10.1016/J.JPBA.2021.114392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Martimiano do Prado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

do Prado, T.M., Machado, S.A.S. (2023). Trends in Electroanalytical Assays for COVID-19 Diagnosis. In: Crespilho, F.N. (eds) COVID-19 Metabolomics and Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-031-15889-6_1

Download citation

Publish with us

Policies and ethics