Skip to main content

Dendrimers in Malaria

  • Chapter
  • First Online:
Malarial Drug Delivery Systems

Abstract

Malaria is a widespread well-known disease, causing many mortalities still today. Many drug therapies are available for the treatment of the disease, but still the scope for improvement is available. Nanocarriers indicate vast scope for research in antimalarial therapy. Dendrimers are one of the novel approaches in the everlasting research for antimalarial therapy. Dendrimers are largely branched, monodisperse macromolecules, which are having a structural perfection. Their surface and core are used to carry drug molecules along with them to the targeted delivery site. Many antimalarial drugs like chloroquine, primaquine, etc. are studied by conjugating with the dendrimers for their antimalarial properties along with the various formulation properties. They have been studied for the drug pharmacokinetic profiles, dose frequency and drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO, World malaria report 2020.

    Google Scholar 

  2. Malaria biology. Available at https://www.cdc.gov/malaria/about/biology/. Accessed on 20 Aug 2016.

  3. Klayman DL. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985;228(4703):1049–55.

    CAS  PubMed  Google Scholar 

  4. Meshnick SR. Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002;32(13):1655–60.

    CAS  PubMed  Google Scholar 

  5. Posner GH, O’Neill PM. Knowledge of the proposed chemical mechanism of action and cytochrome P450 metabolism of antimalarial trioxanes like artemisinin allows rational design of new antimalarial peroxides. Acc Chem Res. 2004;37(6):397–404.

    CAS  PubMed  Google Scholar 

  6. Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One. 2010;5(3):e9582.

    PubMed  PubMed Central  Google Scholar 

  7. Vale N, Moreira R, Gomes P. Primaquine revisited six decades after its discovery. Eur J Med Chem. 2009;44(3):937–53.

    CAS  PubMed  Google Scholar 

  8. Hiebsch RR, Raub TJ, Wattenberg BW. Primaquine blocks transport by inhibiting the formation of functional transport vesicles. Studies in a cell-free assay of protein transport through the Golgi apparatus. J Biol Chem. 1991;266(30):20323–8.

    CAS  PubMed  Google Scholar 

  9. Fernando D, Rodrigo C, Rajapakse S. Primaquine in vivax malaria: an update and review on management issues. Malar J. 2011;10(1):1.

    Google Scholar 

  10. Trape JF. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg. 2001;64(1):12–7.

    CAS  PubMed  Google Scholar 

  11. Bray PG, Hawley SR, Mungthin M, Ward SA. Physicochemical properties correlated with drug resistance and the reversal of drug resistance in Plasmodium falciparum. Mol Pharmacol. 1996;50(6):1559–66.

    CAS  PubMed  Google Scholar 

  12. Slater AF. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol Ther. 1993;57(2–3):203–35.

    CAS  PubMed  Google Scholar 

  13. Chou AC, Fitch CD. Control of heme polymerase by chloroquine and other quinolone derivatives. Biochem Biophys Res Commun. 1993;195(1):422–7.

    CAS  PubMed  Google Scholar 

  14. Chai A, Chevli R, Fitch C. Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry. 1980;19(8):1543–9.

    Google Scholar 

  15. Adaramoye OA, Osaimoje DO, Akinsanya AM, Nneji CM, Fafunso MA, Ademowo OG. Changes in antioxidant status and biochemical indices after acute administration of artemether, artemether- lumefantrine and halofantrine in rats. Basic Clin Pharmacol Toxicol. 2008;102(4):412–8.

    CAS  PubMed  Google Scholar 

  16. Falade C, Makanga M, Premji Z, Ortmann CE, Stockmeyer M, de Palacios PI. Efficacy and safety of artemether–lumefantrine (Coartem®) tablets (six-dose regimen) in African infants and children with acute, uncomplicated falciparum malaria. Trans R Soc Trop Med Hyg. 2005;99(6):459–67.

    CAS  PubMed  Google Scholar 

  17. Santos-Magalhaes NS, Mosqueira VC. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev. 2010;62(4):560–75.

    CAS  PubMed  Google Scholar 

  18. Marques J, Valle-Delgado JJ, Urban P, Baro E, Prohens R, Mayor A, Cistero P, Delves M, Sinden RE, Grandfils C, de Paz JL. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine. 2017;13(2):515–25.

    CAS  PubMed  Google Scholar 

  19. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):1.

    Google Scholar 

  20. Moles E, Urbán P, Jimenez-Díaz MB, Viera-Morilla S, Angulo-Barturen I, Busquets MA, Fernàndez-Busquets X. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J Control Release. 2015;210:217–29.

    CAS  PubMed  Google Scholar 

  21. Moles E, Moll K, Ch’ng JH, Parini P, Wahlgren M, Fernandez-Busquets X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release. 2016;241:57–67.

    CAS  PubMed  Google Scholar 

  22. Pirson P, Steiger RF, Trouet A, Gillet J, Herman F. Liposomes in the chemotherapy of experimental murine malaria. Trans R Soc Trop Med Hyg. 1979;73(3):347.

    CAS  PubMed  Google Scholar 

  23. Qiu L, Jing N, Jin Y. Preparation and in vitro evaluation of liposomal chloroquine diphosphate loaded by a transmembrane pH-gradient method. Int J Pharm. 2008;361(1):56–63.

    CAS  PubMed  Google Scholar 

  24. Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2):165–96.

    CAS  PubMed  Google Scholar 

  25. Utreja S, Jain NK. Solid lipid nanoparticles. Adv Control Novel Drug Deliv. 2001:408–24.

    Google Scholar 

  26. Mueller RH, Maeder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.

    Google Scholar 

  27. Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1):121–8.

    PubMed  Google Scholar 

  28. Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    PubMed  Google Scholar 

  29. Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5(2):123–7.

    PubMed  Google Scholar 

  30. Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter. 2016;12(11):2826–41.

    CAS  PubMed  Google Scholar 

  31. Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B, Chen X. Polymeric nanostructured materials for biomedical applications. Prog Polym Sci. 2016;60:86.

    CAS  Google Scholar 

  32. Barratt G. Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci CMLS. 2003;60(1):21–37.

    CAS  PubMed  Google Scholar 

  33. Couvreur P, Barratt G, Fattal E, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst. 2002;19(2):99–134.

    CAS  PubMed  Google Scholar 

  34. Dos Santos PP, Flôres SH, de Oliveira RA, Chisté RC. Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends Food Sci Technol. 2016;53:23–33.

    Google Scholar 

  35. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. Dendritic macromolecules— synthesis of starburst dendrimers. Macromolecules. 1986;19:2466–8.

    CAS  Google Scholar 

  36. Newkome GR, Yao ZQ, Baker GR, Gupta VK, Russo PS, Saunders MJ. Cascade molecules: 2. Synthesis and characterization of a benzene [9]3-arborol. J Am Chem Soc. 1986;108:849–50.

    CAS  Google Scholar 

  37. Sayed S, Hedstrand DM, Spinder R, Tomalia DA. Hydrophobically modified poly (amidoamine) (PAMAM) dendrimers: their properties at the air-water interface and use as nanoscopic container molecules. J Mater Chem. 1997;7:1199–205.

    Google Scholar 

  38. Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2012;64:102–15.

    Google Scholar 

  39. Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci. 2005;30:294–324.

    CAS  Google Scholar 

  40. Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Zaldívar-Lelo de Larrea G, Sosa-Ferreyra CF, Mercado-Curiel RF, Manríquez J, Bustos E. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater. 2014;2014:5072–3.

    Google Scholar 

  41. Gómez R, de la Mata FJ, Jiménez-Fuentes JL, Ortega P, Klajnert B, Pedziwiatr-Werbicka E, Shcharbin D, Bryszewska M, Maly M, Maly J. Cationic carbosilane dendrimers as non-viral vectors of nucleic acids (oligonucleotide or siRNA) for gene therapy purposes. In: Dendrimers in biomedical applications, vol. 6. Cambridge: RSC Publishing; 2013. p. 40–55.

    Google Scholar 

  42. Yang Y, Sunoqrot S, Stowell C, Ji J, Lee CW, Kim JW, Khan SA, Hong S. Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules. 2012;13:2154–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y, Pearson RM, Lee O, Lee CW, Chatterton RT Jr, Khan SA, Hong S. Dendron-based micelles for topical delivery of endoxifen: a potential chemo-preventive medicine for breast cancer. Adv Funct Mater. 2014;24:2442–9.

    CAS  Google Scholar 

  44. Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm. 2018;548:707–20.

    CAS  PubMed  Google Scholar 

  45. Tomalia DA, Naylor AM, Goddard Iii WA. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. ACIEAY. 1990;29:138–75.

    Google Scholar 

  46. De Brabander-van den Berg EMM, Meijer EW. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. ACIEAY. 1993;32:1308–11.

    Google Scholar 

  47. Sadler K, Tam JP. Peptide dendrimers: applications and synthesis. J Biotechnol. 2002;90:195–229.

    CAS  PubMed  Google Scholar 

  48. Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112:7638–47.

    CAS  Google Scholar 

  49. Grinstaff MW. Biodendrimers: new polymeric biomaterials for tissue engineering. Chemistry. 2002;8:2839–46.

    PubMed  Google Scholar 

  50. Ihre H, Hult A, Söderlind E. Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2,2-bis(hydroxymethyl)propionic acid and 1,1,1-tris(hydroxyphenyl)ethane. J Am Chem Soc. 1996;118:6388–95.

    CAS  Google Scholar 

  51. Turnbull WB, Stoddart JF. Design and synthesis of glycodendrimers. J Biotechnol. 2002;90:231–55.

    CAS  PubMed  Google Scholar 

  52. Nilsen TW, Grayzel J, Prensky W. Dendritic nucleic acid structures. J Theor Biol. 1997;187:273–84.

    CAS  PubMed  Google Scholar 

  53. Li Y, Tseng YD, Kwon SY, D’Espaux L, Bunch JS, McEuen PL, Luo D. Controlled assembly of dendrimer-like DNA. Nat Mater. 2004;3:38–42.

    CAS  PubMed  Google Scholar 

  54. Sandoval-Yanez C, Castro RC. Dendrimers: amazing platforms for bioactive molecule delivery systems. Materials. 2020;13:570.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Falanga A, Tarallo R, Carberry T, Galdiero M, Weck M, Galdiero S. Elucidation of the interaction mechanism with liposomes of gH625-peptide functionalized dendrimers. PLoS One. 2014;9:e112128.

    PubMed  PubMed Central  Google Scholar 

  56. SPL7013 COVID-19 Nasal Spray Virucidal against SARS-CoV-2. Available online: https://starpharma.com/news/story/spl7013-covid-19-nasal-spray-virucidal-against-sars-cov-2. Accessed on 14 Sept 2020.

  57. Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties. Toxic Biomed Appl Mater. 2019;13:65.

    Google Scholar 

  58. Javanbakht S, Hemmati A, Namazi H, Heydari A. Carboxymethylcellulose-coated 5-fluorouracil@MOF-5 nano-hybrid as a bio-nanocomposite carrier for the anticancer oral delivery. Int J Biol Macromol. 2020;155:876–82.

    CAS  PubMed  Google Scholar 

  59. ZadehMehrizi T, Khamesipour A, ShafieeArdestani M, EbrahimiShahmabadi H, Haji MollaHoseini M, Mosaffa N, Ramezani A. Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin Bdendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus. Int J Nanomedicine. 2019;14:7593–607.

    Google Scholar 

  60. Li Z, Yang H, Hu M, Zhang L, Ge S, Cui K, Yu J. Cathode photoelectrochemical paper device for microRNA detection based on cascaded photoactive structures and hemin/Pt nanoparticle-decorated DNA dendrimers. ACS Appl Mater Interfaces. 2020;12:17177–84.

    CAS  PubMed  Google Scholar 

  61. Vidal L, Ben Aissa A, Salabert J, Jara JJ, Vallribera A, Pividori MI, Sebastian RM. Biotinylated phosphorus dendrimers as control line in nucleic acid lateral flow tests. Biomacromolecules. 2020;21:1315–23.

    CAS  PubMed  Google Scholar 

  62. Ray S, Li Z, Hsu CH, Hwang LP, Lin YC, Chou PT, Lin YY. Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics. 2018;8:6322–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagpal K, Mohan A, Thakur S, Kumar P. Dendritic platforms for biomimicry and biotechnological applications. Artif Cells Nanomed Biotechnol. 2018;46:861–75.

    CAS  PubMed  Google Scholar 

  64. Ye M, Qian Y, Tang J, Hu H, Sui M, Shen Y. Targeted biodegradable dendritic MRI contrast agent for enhanced tumor imaging. J Control Release. 2013;169(3):239–45.

    CAS  PubMed  Google Scholar 

  65. Svenningsen SW, Frederiksen RF, Counil C, Ficker M, Leisner JJ, Christense JB. Synthesis and antimicrobial properties of a ciprofloxacin and PAMAM-dendrimer conjugate. Molecules. 2020;25:1389.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ben Jeddou F, Falconnet L, Luscher A, Siriwardena T, Reymond JL, van Delden C, Kohler T. Adaptive and mutational responses to peptide dendrimer antimicrobials in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2020;64(4):e02040-19.

    Google Scholar 

  67. Bosch P, Staneva D, Vasileva-Tonkova E, Grozdanov P, Nikolova I, Kukeva R, Stoyanova R, Grabchev I. New poly (propylene imine) dendrimer modified with Acridine and its Cu(II) complex: synthesis, characterization and antimicrobial activity. Materials. 2019;12:3020.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MF. Antimicrobial polymers: the potential replacement of existing antibiotics? Int J Mol Sci. 2019;20:2747.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Garcia-Gallego S, Franci G, Falanga A, Gomez R, Folliero V, Galdiero S, de la Mata FJ, Galdiero M. Function oriented molecular design: dendrimers as novel antimicrobials. Molecules. 2017;22:1581.

    PubMed  PubMed Central  Google Scholar 

  70. Garcia-Gallego S, Diaz L, Jimenez JL, Gomez R, de la Mata FJ, Munoz-Fernandez MA. HIV-1 antiviral behavior of anionic PPI metallo-dendrimers with EDA core. Eur J Med Chem. 2015;98:139–48.

    CAS  PubMed  Google Scholar 

  71. Tarallo R, Carberry TP, Falanga A, Vitiello M, Galdiero S, Galdiero M, Weck M. Dendrimers functionalized with membrane-interacting peptides for viral inhibition. Int J Nanomedicine. 2013;8:521–34.

    PubMed  PubMed Central  Google Scholar 

  72. Carberry TP, Tarallo R, Falanga A, Finamore E, Galdiero M, Weck M, Galdiero S. Dendrimer functionalization with a membrane-interacting domain of herpes simplex virus type 1: towards intracellular delivery. Chemistry. 2012;18:13678–85.

    CAS  PubMed  Google Scholar 

  73. Bosman AW, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev. 1999;99(7):1665–88.

    CAS  PubMed  Google Scholar 

  74. Hecht S, Vladimirov N, Frechet JM. Encapsulation of functional moieties within branched star polymers: effect of chain length and solvent on site isolation. J Am Chem Soc. 2001;123(1):18–25.

    CAS  PubMed  Google Scholar 

  75. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003;252:263–6.

    CAS  PubMed  Google Scholar 

  76. Malik N, Wiwattanapatapee R, Klopsch R, Lorenz K, Frey H, Weener JW, Meijer EW, Paulus W, Duncan R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled poly(amidoamine) dendrimers in vivo. J Control Release. 2000;65:133–48.

    CAS  PubMed  Google Scholar 

  77. El-Sayed M, Ginski M, Rhodes C, Ghandehari H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release. 2002;81:355–65.

    CAS  PubMed  Google Scholar 

  78. Yoo H, Juliano RL. Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res. 2000;28:4225–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. D’Emanuele A, Attwood D. Dendrimer-drug interactions. Adv Drug Deliv Rev. 2005;57:2147–62.

    PubMed  Google Scholar 

  80. D’Emanuele A, Attwood D, Abu Rmaileh R. In: Swarbrick J, editor. Dendrimers. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker; 2003. p. 1–21.

    Google Scholar 

  81. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp. 1975;51:135–53.

    CAS  Google Scholar 

  82. Bielinska AU, Kukowska-Latallo JF, Johnson J, Tomalia DA, Baker JR. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 1996;24:2176–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kukowska-Latallo JF, Raczka E, Quintana A, Chen CL, Rymaszewski M, Baker JR. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther. 2000;11:1385–95.

    CAS  PubMed  Google Scholar 

  84. Gajbhiye V, Kumar PV, Tekade RK, Jain NK. Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des. 2007;13(3):415–29.

    CAS  Google Scholar 

  85. Sakthivel T, Toth I, Florence AT. Distribution of a lipidic 2.5 nm diameter dendrimer carrier after oral administration. Int J Pharm. 1999;183:51–5.

    CAS  PubMed  Google Scholar 

  86. D’Emanuele A, Jevprasesphant R, Penny J, Attwood D. The use of dendrimer-propanolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release. 2004;95:447–53.

    PubMed  Google Scholar 

  87. Yiyun C, Na M, Tongwen X, Rongqiang F, Xueyuan W, Xiaomin W, et al. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharm Sci. 2007;96(3):595–602.

    Google Scholar 

  88. Roberts J, Adams YE, Tomalia D, Mercer-Smith JA, Lavallee DK. Using starburst dendrimers as linker molecules to radiolabel antibodies. Bioconjug Chem. 1990;1:305–8.

    CAS  PubMed  Google Scholar 

  89. Wiener EC, Auteri FP, Chen JW, Brechbiel MW, Gansow OA, Schneider DS. Molecular dynamics of ion-chelate complexes attached to dendrimers. J Am Chem Soc. 1996;118:7774–82.

    CAS  Google Scholar 

  90. Bryant LH, Brechbiel MW, Wu C, Bulte JWM, Herynek V, Frank JA. Synthesis and relaxometry of high-generation (G=5, 7, 9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging. 1999;9:348–52.

    PubMed  Google Scholar 

  91. Bourne MW, Margerun L, Hylton N, Campion B, Lai JJ, Derugin N, Higgins CB. Evaluation of the effects of intravascular MR contrast media (gadolinium dendrimer) on 3D time of flight magnetic resonance angiography of the body. J Magn Reson Imaging. 1996;6:305–10.

    Google Scholar 

  92. Stevelmans S, Hest J, Jansen J, Boxtel D, Berg E, Meijer EW. Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles. J Am Chem Soc. 1996;118:7398–9.

    CAS  Google Scholar 

  93. Twyman LJ, Beezer AE, Esfand R, Hardy MJ, Mitchell JC. The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Lett. 1999;40:1743–6.

    CAS  Google Scholar 

  94. Liu M, Kono K, Fréchet JMJ. Water- soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release. 2000;65:121–31.

    CAS  PubMed  Google Scholar 

  95. Sigal GB, Mammen M, Dahmann G, Whitesides GM. Polyacrylamides bearing pendant-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus: the strong inhibition reflects enhanced binding through cooperative polyvalent interactions. J Am Chem Soc. 1996;118:3789–800.

    CAS  Google Scholar 

  96. Roy R, Zanini D, Meunier SJ, Romanowska A. Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J Chem Soc Chem Commun. 1993:1869–72.

    Google Scholar 

  97. Zanini D, Roy R. Practical synthesis of starburst PAMAM thiosialodendrimers for probing multivalent carbohydrate-lectin binding properties. J Organomet Chem. 1998;63:3486–91.

    CAS  Google Scholar 

  98. Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials. 2002;23(16):3359–68.

    CAS  PubMed  Google Scholar 

  99. Hawthorne MF. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew Chem. 1993;32:950–84.

    Google Scholar 

  100. Barth RF, Adams DM, Soloway AH, Alam F, Darby MV. Boronated starburst dendrimer-monoclonal antibody immunoconjugates: evaluation as a potential delivery system for neutron captures therapy. Bioconjug Chem. 1994;5:58–66.

    CAS  PubMed  Google Scholar 

  101. Liu L, Barth RF, Adams DM, Soloway AH, Reisefeld RA. Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. J Hematother. 1995;4:477–83.

    CAS  PubMed  Google Scholar 

  102. Capala J, Barth RF, Bendayam M, Lauzon M, Adams DM, Soloway AH, et al. Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem. 1996;7:7–15.

    CAS  PubMed  Google Scholar 

  103. Bhadra D, Bhadra S, Jain NK. PEGylated peptide dendrimeric carriers for the delivery of antimalarial drug chloroquine phosphate. Pharm Res. 2006;23:623–33.

    CAS  PubMed  Google Scholar 

  104. Bhadra D, Bhadra S, Jain NK. PEGylated peptide-based dendritic nanoparticulate systems for delivery of artemether. J Drug Deliv Sci Technol. 2005;15:65–73.

    CAS  Google Scholar 

  105. Movellan J, Urban P, Moles E, de la Fuente JM, Sierra T, Serrano JL, Fernandez-Busquets X. Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials. 2014;35:7940–50.

    CAS  PubMed  Google Scholar 

  106. Janaszewska A, Lazniewska J, Trzepinski P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of dendrimers. Biomol Ther. 2019;9:330.

    CAS  Google Scholar 

  107. Elmi T, Shafiee Ardestani M, Hajialiani F, Motevalian M, Mohamadi M, Sadeghi S, Zamani Z, Tabatabaie F. Novel chloroquine loaded curcumin based anionic linear globular dendrimer G2: a metabolomics study on Plasmodium falciparum in vitro using (1) H NMR spectroscopy. Parasitology. 2020;147:747–59.

    CAS  PubMed  Google Scholar 

  108. Fröhlich T, Hahn F, Belmudes L, Leidenberger M, Friedrich O, Kappes B, Couté Y, Marschall M, Tsogoeva SB. Synthesis of artemisinin-derived dimers, trimers and dendrimers: investigation of their antimalarial and antiviral activities including putative mechanisms of action. Chemistry. 2018;24:8103–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunita, C., Akruti, K., Ankit, C., Patel, J.K. (2023). Dendrimers in Malaria. In: Shegokar, R., Pathak, Y. (eds) Malarial Drug Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-15848-3_7

Download citation

Publish with us

Policies and ethics