Skip to main content

Classification of Driving Behaviors Using STL Formulas: A Comparative Study

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13465))

Abstract

In this paper, we conduct a preliminary comparative study of classification of longitudinal driving behavior using Signal Temporal Logic (STL) formulas. The goal of the classification problem is to distinguish between different driving styles or vehicles. The results can be used to design and test autonomous vehicle policies. We work on a real-life dataset, the Highway Drone Dataset (HighD). To solve this problem, our first approach starts with a formula template and reduces the classification problem to a Mixed-Integer Linear Program (MILP). Solving MILPs becomes computationally challenging with increasing number of variables and constraints. We propose two improvements to split the classification problem into smaller ones. We prove that these simpler problems are related to the original classification problem in a way that their feasibility imply that of the original. Finally, we compare our MILP formulation with an existing STL-based classification tool, LoTuS, in terms of accuracy and execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In: 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, pp. 1–6. IEEE-CYBER 2014, October 2014. https://doi.org/10.1109/CYBER.2014.6917426

  2. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of temporal properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_12

    Chapter  Google Scholar 

  3. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_3

    Chapter  MATH  Google Scholar 

  4. Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in time series. In: Workshop on Knowledge Knowledge Discovery in Databases, vol. 398, pp. 359–370 (1994). http://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-031.pdf

  5. Bombara, G., Belta, C.: Offline and online learning of signal temporal logic formulae using decision trees. ACM Trans. Cyber-Phys. Syst. 5(3), 1–23 (2021). https://doi.org/10.1145/3433994

  6. Chou, G., Ozay, N., Berenson, D.: Explaining multi-stage tasks by learning temporal logic formulas from suboptimal demonstrations. In: Proceedings of Robotics: Science and Systems. Corvalis, Oregon, USA, July 2020. https://doi.org/10.15607/RSS.2020.XVI.097

  7. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009). https://doi.org/10.1016/j.automatica.2008.08.008, https://linkinghub.elsevier.com/retrieve/pii/S000510980800455X

  8. Garg, K., Panagou, D.: Control-lyapunov and control-barrier functions based quadratic program for spatio-temporal specifications. In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 1422–1429 (2019). https://doi.org/10.1109/CDC40024.2019.9029666

  9. Jones, A., Kong, Z., Belta, C.: Anomaly detection in cyber-physical systems: a formal methods approach. In: Proceedings of the IEEE Conference on Decision and Control 2015-February (February), pp. 848–853 (2014). https://doi.org/10.1109/CDC.2014.7039487

  10. Karagulle, R., Aréchiga, N., Decastro, J., Ozay, N.: Classification of driving behaviors using STL formulas: a comparative study (2022). https://doi.org/10.7302/4872, https://deepblue.lib.umich.edu/handle/2027.42/173041

  11. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access 6, 1662–1669 (2017). https://doi.org/10.1109/ACCESS.2017.2779939

  12. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal logic inference for classification and prediction from data. In: HSCC 2014 - Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (Part of CPS Week), pp. 273–282 (2014). https://doi.org/10.1145/2562059.2562146, http://dx.doi.org/10.1145/2562059.2562146

  13. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highD dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In: 2018 IEEE 21st International Conference on Intelligent Transportation Systems (ITSC) (2018). https://doi.org/10.1109/ITSC.2018.8569552

  14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  15. Neider, D., Gavran, I.: Learning linear temporal properties. In: Proceedings of the 18th Conference on Formal Methods in Computer-Aided Design, FMCAD 2018, pp. 148–157, January 2019. https://doi.org/10.23919/FMCAD.2018.8603016

  16. Nilsson, P., et al.: Correct-by-construction adaptive cruise control: two approaches. IEEE Trans. Control Syst. Technol. 24(4), 1294–1307 (2016). https://doi.org/10.1109/TCST.2015.2501351

    Article  Google Scholar 

  17. Pnueli, A.: The temporal logic of programs. In: Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, vol. 1977-October, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.1109/sfcs.1977.32

  18. Raman, V., Donzé, A., Maasoumy, M., Murray, R.M., Sangiovanni-Vincentelli, A., Seshia, S.A.: Model predictive control with signal temporal logic specifications. In: 53rd IEEE Conference on Decision and Control, pp. 81–87 (2014). https://doi.org/10.1109/CDC.2014.7039363

  19. Varnai, P., Dimarogonas, D.V.: On robustness metrics for learning STL tasks. In: Proceedings of the American Control Conference 2020-July, pp. 5394–5399 (2020). https://doi.org/10.23919/ACC45564.2020.9147692

Download references

Acknowledgements

Toyota Research Institute provided funds to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruya Karagulle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karagulle, R., Aréchiga, N., DeCastro, J., Ozay, N. (2022). Classification of Driving Behaviors Using STL Formulas: A Comparative Study. In: Bogomolov, S., Parker, D. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2022. Lecture Notes in Computer Science, vol 13465. Springer, Cham. https://doi.org/10.1007/978-3-031-15839-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15839-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15838-4

  • Online ISBN: 978-3-031-15839-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics