Skip to main content

Model Checking for Entanglement Swapping

  • Conference paper
  • First Online:
  • 405 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13465))

Abstract

Entanglement swapping is a basic primitive in long distance quantum communications. The stochastic nature of various operations like entanglement generation and BSMs makes the entanglement swapping primitive failure prone. It is difficult to predict whether or not an entanglement swapping operation will succeed within a stipulated time. In this paper, we use Probabilistic Timed Automata (PTA) to model the experiment and analyze it through model checking. We report a proof-of-concept mechanism, opening way for the analysis of large scale quantum networks through formal methods. We also report supporting results on a quantum simulator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdeddaim, Y., Kerbaa, A., Maler, O.: Task graph scheduling using timed automata. In: Proceedings International Parallel and Distributed Processing Symposium, p. 237 (2003)

    Google Scholar 

  2. Abdeddaïm, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theor. Comput. Sci. 354, 272–300 (2006)

    Google Scholar 

  3. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind Series). The MIT Press, Cambridge (2008)

    Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, p. 175. India (1984)

    Google Scholar 

  5. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsk-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Google Scholar 

  7. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  Google Scholar 

  8. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  Google Scholar 

  9. Coecke, B.: The logic of entanglement. In: van Breugel, F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash Panangaden. LNCS, vol. 8464, pp. 250–267. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06880-0_13

    Chapter  Google Scholar 

  10. Coopmans, T., et al.: NetSquid, a network simulator for quantum information using discrete events. Commun. Phys. 4(1), 164 (2021)

    Article  Google Scholar 

  11. Dahlberg, A., Wehner, S.: Simulaqron-a simulator for developing quantum internet software. Quan. Sci. Technol. 4(1) (2018)

    Google Scholar 

  12. Diadamo, S., Nötzel, J., Zanger, B., Beşe, M.M.: Qunetsim: a software framework for quantum networks. IEEE Trans. Quant. Eng. 2, 1–12 (2021)

    Google Scholar 

  13. Dür, W., Briegel, H.J.: Entanglement purification and quantum error correction. Rep. Progr. Phys. 70(8), 1381–1424 (2007)

    Google Scholar 

  14. Elboukhari, M., Azizi, M., Azizi, A.: Analysis of the security of bb84 by model checking. Int. J. Netw. Secur. Appl. 2 (2010)

    Google Scholar 

  15. Gay, S., Nagarajan, R., Papanikolaou, N.: Probabilistic model-checking of quantum protocols (2005). https://arxiv.org/abs/quant-ph/0504007

  16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp. Comput. 6(5), 512–535 (1994)

    Google Scholar 

  17. Huang, B., Huang, Y., Kong, J., Huang, X.: Model checking quantum key distribution protocols. In: 2016 8th International Conference on Information Technology in Medicine and Education (ITME), pp. 611–615 (2016)

    Google Scholar 

  18. Kakutani, Y.: A logic for formal verification of quantum programs. In: Datta, A. (ed.) ASIAN 2009. LNCS, vol. 5913, pp. 79–93. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10622-4_7

  19. Khatri, S.: On the design and analysis of near-term quantum network protocols using Markov decision processes (2022). https://arxiv.org/abs/2207.03403

  20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

  21. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Form. Methods Syst. Des. 29, 33–78 (2006)

    Google Scholar 

  22. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 75–95. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-6_5

  23. Liu, J., et al.: Formal verification of quantum algorithms using quantum Hoare logic. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 187–207. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_12

  24. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, USA (2011)

    Google Scholar 

  25. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Form. Methods Syst. Des. 43(2), 164–190 (2013)

    Google Scholar 

  26. Nötzel, J., DiAdamo, S.: Entanglement-enhanced communication networks. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 242–248 (2020)

    Google Scholar 

  27. Pu, Y.E., et al.: Experimental demonstration of memory-enhanced scaling for entanglement connection of quantum repeater segments. Nat. Phot. 15(5), 374–378 (2021)

    Google Scholar 

  28. Wu, X., et al.: SeQUeNCe: a customizable discrete-event simulator of quantum networks. Quantum Sci. Technol. 6 (2020)

    Google Scholar 

  29. Ying, M., Feng, Y.: Model Checking Quantum Systems: Principles and Algorithms. Cambridge University Press, Cambridge (2021)

    Google Scholar 

  30. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detector" bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Panduranga Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Desu, S.S.T., Srivastava, A., Rao, M.V.P. (2022). Model Checking for Entanglement Swapping. In: Bogomolov, S., Parker, D. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2022. Lecture Notes in Computer Science, vol 13465. Springer, Cham. https://doi.org/10.1007/978-3-031-15839-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15839-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15838-4

  • Online ISBN: 978-3-031-15839-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics