Skip to main content

Influence of Placing Thickness on Fiber Orientation and Bridging Law of FRCC

  • Conference paper
  • First Online:
Strain Hardening Cementitious Composites (SHCC 2022)

Part of the book series: RILEM Bookseries ((RILEM,volume 39))

Included in the following conference series:

  • 433 Accesses

Abstract

It is considered that the different placing thicknesses in casting of fiber-reinforced cementitious composite (FRCC) can be one of the factors affecting the fiber orientation and distribution, which is considered to be one of the most important influence factors of the bridging performance of fibers. In this study, a water glass solution is used to conduct the visualization simulation of the flow patterns of fresh mortar with short discrete fibers. Water glass has high viscosity, and it is colorless and transparent. The rheology of mortar matrix before mixing the fiber has been inspected using the flow time based on the test method for flowability of grout measured by the funnel. The orientation intensity that expresses the fiber orientation tendency for the principal orientation angle is calculated by counting the orientation angles of the black target fibers in the water glass solution of three different placing thicknesses. The effect of different placing thicknesses on the fiber bridging performance is considered in the calculation of the bridging law using the elliptic function characterized by the principal orientation angle and the orientation intensity. The results show that a smaller placing thickness in casting leads to a greater fiber orientation intensity and better tensile performance based on the bridging law.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ozu, Y., Miyaguchi, M., Kanakubo, T.: Modeling of bridging law for PVA fiber-reinforced cementitious composite considering fiber orientation. J. Civil Eng. Archit. 12(9), 651–661 (2018)

    Google Scholar 

  2. Kanakubo, T., Miyaguchi, M., Asano, K.: Influence of fiber orientation on bridging performance of polyvinyl alcohol fiber-reinforced cementitious composite. ACI Mater. J. 113(2), 131–141 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Kanakubo, T. (2023). Influence of Placing Thickness on Fiber Orientation and Bridging Law of FRCC. In: Kunieda, M., Kanakubo, T., Kanda, T., Kobayashi, K. (eds) Strain Hardening Cementitious Composites. SHCC 2022. RILEM Bookseries, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-031-15805-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15805-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15804-9

  • Online ISBN: 978-3-031-15805-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics