Skip to main content

NeuralPDE: Modelling Dynamical Systems from Data

  • Conference paper
  • First Online:
KI 2022: Advances in Artificial Intelligence (KI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13404))

Included in the following conference series:

Abstract

Many physical processes such as weather phenomena or fluid mechanics are governed by partial differential equations (PDEs). Modelling such dynamical systems using Neural Networks is an active research field. However, current methods are still very limited, as they do not exploit the knowledge about the dynamical nature of the system, require extensive prior knowledge about the governing equations or are limited to linear or first-order equations. In this work we make the observation that the Method of Lines used to solve PDEs can be represented using convolutions which makes convolutional neural networks (CNNs) the natural choice to parametrize arbitrary PDE dynamics. We combine this parametrization with differentiable ODE solvers to form the NeuralPDE Model, which explicitly takes into account the fact that the data is governed by differential equations. We show in several experiments on toy and real-world data that our model consistently outperforms state-of-the-art models used to learn dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our code will be made publicly available upon publication.

  2. 2.

    https://resources.marine.copernicus.eu/product-detail/GLOBAL_MULTIYEAR_WAV_001_032/INFORMATION.

  3. 3.

    https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/plasim.html.

References

  1. Ayed, I., de Bézenac, E., Pajot, A., Brajard, J., Gallinari, P.: Learning dynamical systems from partial observations. CoRR abs/1902.11136 (2019). http://arxiv.org/abs/1902.11136

  2. Belbute-Peres, F.D.A., Economon, T., Kolter, Z.: Combining differentiable PDE solvers and graph neural networks for fluid flow prediction. In: International Conference on Machine Learning, pp. 2402–2411. PMLR, November 2020. https://proceedings.mlr.press/v119/de-avila-belbute-peres20a.html

  3. Berg, J., Nyström, K.: Data-driven discovery of PDEs in complex datasets. J. Comput. Phys. 384, 239–252 (2019). https://doi.org/10.1016/j.jcp.2019.01.036, http://arxiv.org/abs/1808.10788, arXiv: 1808.10788

  4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42 (2017). https://doi.org/10.1109/MSP.2017.2693418, http://arxiv.org/abs/1611.08097, arXiv: 1611.08097 version: 1

  5. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential equations. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018). https://papers.nips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html

  6. Dormand, J., Prince, P.: A family of embedded runge-kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980). https://doi.org/10.1016/0771-050X(80)90013-3, https://www.sciencedirect.com/science/article/pii/0771050X80900133

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  8. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv:1603.05027 [cs], July 2016. http://arxiv.org/abs/1603.05027, arXiv: 1603.05027

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

  10. Iakovlev, V., Heinonen, M., Lähdesmäki, H.: Learning continuous-time pdes from sparse data with graph neural networks. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=aUX5Plaq7Oy

  11. Iooss, G., Helleman, R.H.G.: Chaotic behaviour of deterministic systems. North-Holland, Netherlands (1983). http://inis.iaea.org/search/search.aspx?orig_q=RN:16062000

  12. Karlbauer, M., Otte, S., Lensch, H.P.A., Scholten, T., Wulfmeyer, V., Butz, M.V.: A distributed neural network architecture for robust non-linear spatio-temporal prediction. arXiv:1912.11141 [cs], December 2019. http://arxiv.org/abs/1912.11141, arXiv: 1912.11141

  13. Kuznetsov, Y.A.: Introduction to Dynamical Systems, pp. 1–35. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2421-9_1

  14. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, vol. 2. Morgan-Kaufmann (1990). https://proceedings.neurips.cc/paper/1989/hash/53c3bce66e43be4f209556518c2fcb54-Abstract.html

  15. Li, J., Sun, G., Zhao, G., Lehman, L.W.H.: Robust low-rank discovery of data-driven partial differential equations. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 767–774, April 2020. https://doi.org/10.1609/aaai.v34i01.5420, https://ojs.aaai.org/index.php/AAAI/article/view/5420

  16. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv:1506.00019 [cs], October 2015. http://arxiv.org/abs/1506.00019, arXiv: 1506.00019

  17. Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019). https://doi.org/10.1016/j.jcp.2019.108925, http://arxiv.org/abs/1812.04426, arXiv: 1812.04426

  18. Praditia, T., Karlbauer, M., Otte, S., Oladyshkin, S., Butz, M.V., Nowak, W.: Finite volume neural network: modeling subsurface contaminant transport. arXiv:2104.06010 [cs], April 2021. http://arxiv.org/abs/2104.06010, arXiv: 2104.06010

  19. Rackauckas, C., et al.: Universal differential equations for scientific machine learning. arXiv:2001.04385 [cs, math, q-bio, stat], August 2020. http://arxiv.org/abs/2001.04385, arXiv: 2001.04385

  20. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (Part I): data-driven solutions of nonlinear partial differential equations. arXiv:1711.10561 [cs, math, stat], November 2017. http://arxiv.org/abs/1711.10561, arXiv: 1711.10561

  21. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (Part II): data-driven discovery of nonlinear partial differential equations. arXiv:1711.10566 [cs, math, stat], November 2017. http://arxiv.org/abs/1711.10566, arXiv: 1711.10566 version: 1

  22. Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S., Thuerey, N.: WeatherBench: a benchmark data set for data-driven weather forecasting. J. Adv. Model. Earth Syst. 12(11), e2020MS002203 (2020). https://doi.org/10.1029/2020MS002203, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020MS002203

  23. Rasp, S., Thuerey, N.: Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: a new model for weatherbench. J. Adv. Model. Earth Syst. 13(2), e2020MS002405 (2021). https://doi.org/10.1029/2020MS002405, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020MS002405

  24. Rudolph, M.: Attaining exponential convergence for the flux error with second- and fourth-order accurate finite-difference equations. II. Application to systems comprising first-order chemical reactions. J. Comput. Chem. 26(6), 633–641 (2005). https://doi.org/10.1002/jcc.20201, https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20201

  25. Scher, S., Messori, G.: Weather and climate forecasting with neural networks: using general circulation models (GCMS) with different complexity as a study ground. Geosci. Model Dev. 12(7), 2797–2809 (2019). https://doi.org/10.5194/gmd-12-2797-2019, https://gmd.copernicus.org/articles/12/2797/2019/

  26. Schiesser, W.E.: The numerical method of lines: integration of partial differential equations. Elsevier, July 2012. google-Books-ID: 2YDNCgAAQBAJ

    Google Scholar 

  27. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., WOO, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper/2015/hash/07563a3fe3bbe7e3ba84431ad9d055af-Abstract.html

  28. So, C.C., Li, T.O., Wu, C., Yung, S.P.: Differential spectral normalization (DSN) for PDE discovery. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 11, pp. 9675–9684, May 2021. https://ojs.aaai.org/index.php/AAAI/article/view/17164

  29. Wang, D., Yang, Y., Ning, S.: DeepSTCL: a deep spatio-temporal ConvLSTM for travel demand prediction. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, Julu 2018. https://doi.org/10.1109/IJCNN.2018.8489530, iSSN: 2161–4407

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Dulny .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1415 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dulny, A., Hotho, A., Krause, A. (2022). NeuralPDE: Modelling Dynamical Systems from Data. In: Bergmann, R., Malburg, L., Rodermund, S.C., Timm, I.J. (eds) KI 2022: Advances in Artificial Intelligence. KI 2022. Lecture Notes in Computer Science(), vol 13404. Springer, Cham. https://doi.org/10.1007/978-3-031-15791-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15791-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15790-5

  • Online ISBN: 978-3-031-15791-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics