Abstract
Advances in the Internet of Things (IoT) and telecommunications technologies (e.g., 5G) have contributed to the development of smart cities and nations (collectively referred to as smart communities). In a smart community, IoT devices can collect significant information about urban residents (e.g., a large number of images collected by cameras containing sensitive information), and such information may be shared with intermediate nodes. In real-world deployment, intermediate nodes are not completely trusted, where the information collected may be used for commercial purposes (e.g., user profiling and advertising) or malicious activities (e.g., covert surveillance). In this paper, we introduce an approach to ensure privacy-preserving image masking. Specifically, before the image is transmitted to the camera owner or the monitoring cloud platform, only sensitive areas instead of the entire image will be processed according to the camera owner’s settings, which allows to significantly reduce the computational cost. Then, in order to reduce the interactions between the community data center and the IoT camera, the monitoring cloud platform performs proxy re-encryption. This allows the community data center to recover the original image without relying on the IoT device’s private key. Our evaluation indicates the utility and efficiency of our approach, as compared with similar schemes.
Keywords
- Smart community
- Proxy re-encryption
- Privacy preservation
- Image masking
Supported in part by the Natural Science Foundation of China under Grant 62072133, in part by the Key Projects of Guangxi Natural Science Foundation under Grant 2018GXNSFDA281040, in part by the Innovation Project of Guangxi Graduate Education under Grant YCSW2022279.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Boccardi, F., Heath, R.W., Lozano, A., Marzetta, T.L., Popovski, P.: Five disruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014). https://doi.org/10.1109/MCOM.2014.6736746
Chen, Z., Zhu, T., Wang, C., Ren, W., Xiong, P.: GAN-based image privacy preservation: balancing privacy and utility. In: Chen, X., Yan, H., Yan, Q., Zhang, X. (eds.) ML4CS 2020. LNCS, vol. 12486, pp. 287–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62223-7_24
De Santis, F., Schauer, A., Sigl, G.: Chacha20-poly1305 authenticated encryption for high-speed embedded IoT applications. In: Design, Automation Test in Europe Conference Exhibition (DATE 2017), pp. 692–697 (2017). https://doi.org/10.23919/DATE.2017.7927078
Dhall, S., Pal, S.K., Sharma, K.: A chaos-based multi-level dynamic framework for image encryption. In: Alam, M., Shakil, K.A., Khan, S. (eds.) Internet of Things (IoT), pp. 189–217. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37468-6_10
Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_19
Gu, G., Ling, J.: A fast image encryption method by using chaotic 3D cat maps. Optik 125(17), 4700–4705 (2014). https://doi.org/10.1016/j.ijleo.2014.05.023, https://www.sciencedirect.com/science/article/pii/S0030402614005993
Guan, Z., Li, J., Huang, L., Xiong, X., Liu, Y., Cai, S.: A novel and fast encryption system based on improved Josephus scrambling and chaotic mapping. Entropy 24(3) (2022). https://doi.org/10.3390/e24030384, https://www.mdpi.com/1099-4300/24/3/384
Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369 (2010). https://doi.org/10.1109/ICPR.2010.579
Hua, Z., Zhou, Y., Huang, H.: Cosine-transform-based chaotic system for image encryption. Inf. Sci. 480, 403–419 (2019). https://doi.org/10.1016/j.ins.2018.12.048, https://www.sciencedirect.com/science/article/pii/S0020025518309927
Huynh-Thu, Q., Ghanbari, M.: Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800–801 (2008)
Jan, M.A., Zhang, W., Usman, M., Tan, Z., Khan, F., Luo, E.: SmartEdge: an end-to-end encryption framework for an edge-enabled smart city application. J. Netw. Comput. Appl. 137, 1–10 (2019). https://doi.org/10.1016/j.jnca.2019.02.023, https://www.sciencedirect.com/science/article/pii/S1084804519300827
Li, T., Zhang, D.: Hyperchaotic image encryption based on multiple bit permutation and diffusion. Entropy 23(5), 510 (2021). https://doi.org/10.3390/e23050510, https://www.mdpi.com/1099-4300/23/5/510
Li, X., Lu, R., Liang, X., Shen, X., Chen, J., Lin, X.: Smart community: an internet of things application. IEEE Commun. Mag. 49(11), 68–75 (2011). https://doi.org/10.1109/MCOM.2011.6069711
Liu, W., Sun, K., Zhu, C.: A fast image encryption algorithm based on chaotic map. Opt. Lasers Eng. 84, 26–36 (2016). https://doi.org/10.1016/j.optlaseng.2016.03.019
Maisheri, C., Sharma, D.: Enabling indirect mutual trust for cloud storage systems. Int. J. Comput. Appl. 82(2), 1–11 (2013). https://doi.org/10.5120/14085-0768
Meng, L., Yin, S., Zhao, C., Li, H., Sun, Y.: An improved image encryption algorithm based on chaotic mapping and discrete wavelet transform domain. Int. J. Netw. Secur. 22(1), 155–160 (2020)
Mondal, B., Singh, J.P.: A lightweight image encryption scheme based on chaos and diffusion circuit. Multimedia Tools Appl. 1–25 (2021)
Muhammad, K., Hamza, R., Ahmad, J., Lloret, J., Wang, H., Baik, S.W.: Secure surveillance framework for IoT systems using probabilistic image encryption. IEEE Trans. Industr. Inf. 14(8), 3679–3689 (2018). https://doi.org/10.1109/TII.2018.2791944
Naseer, Y., Shah, T., Shah, D.: A novel hybrid permutation substitution base colored image encryption scheme for multimedia data. J. Inf. Secur. Appl. 59, 102829 (2021). https://doi.org/10.1016/j.jisa.2021.102829, https://www.sciencedirect.com/science/article/pii/S221421262100065X
Preishuber, M., Hütter, T., Katzenbeisser, S., Uhl, A.: Depreciating motivation and empirical security analysis of chaos-based image and video encryption. IEEE Trans. Inf. Forensics Secur. 13(9), 2137–2150 (2018). https://doi.org/10.1109/TIFS.2018.2812080
Rajendran, S., Doraipandian, M.: Chaos based secure medical image transmission model for IoT- powered healthcare systems. In: IOP Conference Series: Materials Science and Engineering, vol. 1022, no. 1, p. 012106 (2021). https://doi.org/10.1088/1757-899x/1022/1/012106
Harichandana, B.S.S., Agarwal, V., Ghosh, S., Ramena, G., Kumar, S., Raja, B.R.K.: PrivPAS: a real time privacy-preserving ai system and applied ethics. In: 2022 IEEE 16th International Conference on Semantic Computing (ICSC), pp. 9–16 (2022). https://doi.org/10.1109/ICSC52841.2022.00010
Sirichotedumrong, W., Kiya, H.: A GAN-based image transformation scheme for privacy-preserving deep neural networks. In: 2020 28th European Signal Processing Conference (EUSIPCO), pp. 745–749 (2021). https://doi.org/10.23919/Eusipco47968.2020.9287532
Wu, Y., Noonan, J.P., Agaian, S., et al.: NPCR and UACI randomness tests for image encryption. Cyber J. Multi. J. Sci. Tech. J. Sel. Areas Telecommun. (JSAT) 1(2), 31–38 (2011)
Yang, G., Cao, J., Chen, Z., Guo, J., Li, J.: Graph-based neural networks for explainable image privacy inference. Pattern Recogn. 105, 107360 (2020). https://doi.org/10.1016/j.patcog.2020.107360, https://www.sciencedirect.com/science/article/pii/S0031320320301631
Yang, J., Liu, J., Han, R., Wu, J.: Transferable face image privacy protection based on federated learning and ensemble models. Complex Intell. Syst. 7(5), 2299–2315 (2021). https://doi.org/10.1007/s40747-021-00399-6
Yoosefian Dezfuli Nezhad, S., Safdarian, N., Hoseini Zadeh, S.A.: New method for fingerprint images encryption using DNA sequence and chaotic tent map. Optik 224, 165661 (2020). https://doi.org/10.1016/j.ijleo.2020.165661, https://www.sciencedirect.com/science/article/pii/S0030402620314923
Zhang, Y.: The fast image encryption algorithm based on lifting scheme and chaos. Inf. Sci. 520, 177–194 (2020). https://doi.org/10.1016/j.ins.2020.02.012, https://www.sciencedirect.com/science/article/pii/S0020025520300748
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, Z., Liu, Y., Meng, W. (2022). Lightweight and Practical Privacy-Preserving Image Masking in Smart Community. In: Alcaraz, C., Chen, L., Li, S., Samarati, P. (eds) Information and Communications Security. ICICS 2022. Lecture Notes in Computer Science, vol 13407. Springer, Cham. https://doi.org/10.1007/978-3-031-15777-6_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-15777-6_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15776-9
Online ISBN: 978-3-031-15777-6
eBook Packages: Computer ScienceComputer Science (R0)