Skip to main content

Knowledge Extraction from Biological and Social Graphs

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2022)

Abstract

Many problems from the real life deal with the generation of enormous, varied, dynamic, and interconnected datasets coming from different and heterogeneous sources. This PhD Thesis focuses on the proposal of novel knowledge extraction techniques from graphs, mainly based on Big Data methodologies. Two application contexts are considered: Biological and Medical data, with the final aim of identifying biomarkers for diagnosis, treatment, prognosis, and prevention of diseases. Social data, for the optimization of advertising campaigns, the comparison of user profiles, and neighborhood analysis.

Supported by University of Palermo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostolico, A., Parida, L., Rombo, S.E.: Motif patterns in 2D. Theoret. Comput. Sci. 390(1), 40–55 (2008)

    Article  MathSciNet  Google Scholar 

  2. Backstrom, L., Kleinberg, J.: Romantic partnerships and the dispersion of social ties: a network analysis of relationship status on Facebook. In: Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work; Social Computing, CSCW 2014, pp. 831–841, New York, NY, USA. ACM (2014)

    Google Scholar 

  3. Bonomo, M., Ciaccio, G., De Salve, A., Rombo, S.E.: Customer recommendation based on profile matching and customized campaigns in on-line social networks. In: ASONAM 2019: International Conference on Advances in Social Networks Analysis and Mining, Vancouver, British Columbia, Canada, 27–30 August 2019, pp. 1155–1159. ACM (2019)

    Google Scholar 

  4. Bonomo, M., Giancarlo, R., Greco, D., Rombo, S.E.: Topological ranks reveal functional knowledge encoded in biological networks: a comparative analysis. Briefings Bioinform. 23(3), bbac101 (2022)

    Google Scholar 

  5. Bonomo, M., La Placa, A., Rombo, S.E.: Prediction of lncRNA-disease associations from tripartite graphs. In: Gadepally, V., et al. (eds.) DMAH/Poly -2020. LNCS, vol. 12633, pp. 205–210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71055-2_16

    Chapter  Google Scholar 

  6. Bonomo, M., La Placa, A., Rombo, S.E.: Prediction of Disease-lncRNA associations via machine learning and big data approaches. In: Mayuri Mehta, K.P. (eds.) Knowledge Modelling and Big Data Analytics in Healthcare Advances and Applications. CRC Press (2021)

    Google Scholar 

  7. Bonomo, M., La Placa, A., Rombo, S.E.: Identifying the K best targets for an advertisement campaign via online social networks. In: Fred, A.L.N., Filipe, J. (eds.) Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2020, KDIR, Budapest, Hungary, 2–4 November 2020, vol. 1, pp. 193–201. SCITEPRESS (2020)

    Google Scholar 

  8. Chen, G., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41, D983–D986 (2013)

    Article  Google Scholar 

  9. Chen, X.: Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci. Rep. 5, 13186 (2015)

    Article  Google Scholar 

  10. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  11. Liang, S., Zhang, X., Ren, Z., Kanoulas, E.: Dynamic embeddings for user profiling in twitter. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, pp. 1764–1773 (2018)

    Google Scholar 

  12. Lin, J., Sugiyama, K., Kan, M., Chua, T.: New and improved: Modeling versions to improve app recommendation. In: Proceedings of the 37th International ACM SIGIR Conference on Research; Development in Information Retrieval, SIGIR 2014, pp. 647–656. ACM (2014)

    Google Scholar 

  13. Lu, C., et al.: Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics 34(19), 3357–3364 (2018)

    Article  Google Scholar 

  14. Marsden, P.V., Campbell, K.E.: Measuring tie strength. Soc. Forces 63, 482–501 (1984)

    Article  Google Scholar 

  15. De Meo, P., Ferrara, E., Fiumara, G., Provetti, A.: Mixing local and global information for community detection in large networks. J. Comput. Syst. Sci. 80(1), 72–87 (2014)

    Article  MathSciNet  Google Scholar 

  16. Parida, L., Pizzi, C., Rombo, S.E.: Irredundant tandem motifs. Theor. Comput. Sci. 525, 89–102 (2014). Advances in Stringology

    Article  MathSciNet  Google Scholar 

  17. Pizzuti, C., Rombo, S.E.: PINCoC: a co-clustering based approach to analyze protein-protein interaction networks. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 821–830. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77226-2_82

    Chapter  Google Scholar 

  18. Pizzuti, C., Rombo, S.E.: An evolutionary restricted neighborhood search clustering approach for PPI networks. Neurocomputing 145, 53–61 (2014)

    Article  Google Scholar 

  19. Radicchi, F., Castellano, C., Cecconi, F., et al.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101, 2658–2663 (2004)

    Article  Google Scholar 

  20. Ravasz, E., Somera, A.L., Mongru, D.A., et al.: Hierarchical Organization of Modularity in Metabolic Networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  21. Rombo, S.E.: Extracting string motif bases for quorum higher than two. Theor. Comput. Sci. 460, 94–103 (2012)

    Article  MathSciNet  Google Scholar 

  22. Schwartz, H.A., et al.: Personality, gender, and age in the language of social media: the open-vocabulary approach. PLoS ONE 8(9), e73791 (2013)

    Article  Google Scholar 

  23. von Mering, C., et al.: Comparative assessment of a large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  24. Wang, J., Li, M., Chen, J., Pan, Y.: A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks. IEEE/ACM Trans. Comput. Biology Bioinf. 8(3), 607–620 (2011)

    Google Scholar 

  25. Yip, A., Horvath, S.: Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8, 22 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella Bonomo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonomo, M. (2022). Knowledge Extraction from Biological and Social Graphs. In: Chiusano, S., et al. New Trends in Database and Information Systems. ADBIS 2022. Communications in Computer and Information Science, vol 1652. Springer, Cham. https://doi.org/10.1007/978-3-031-15743-1_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15743-1_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15742-4

  • Online ISBN: 978-3-031-15743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics