Skip to main content

A Review: Biological Insights on Knowledge Graphs

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1652))

Included in the following conference series:

Abstract

Knowledge graphs in the biomedical context are spreading rapidly attracting the strong interest of the research due to their natural way of representing biomedical knowledge by integrating heterogeneous domains (genomic, pharmaceutical, clinical etc.). In this paper we will give an overview of the application of knowledge graphs from the biological to the clinical context and show the most recent ways of representing biomedical knowledge with embeddings (KGE). Finally, we present challenges, such as the integration of different knowledge graphs and the interpretability of predictions of new relations, that recent improvements in this field face. Furthermore, we introduce promising future avenues of research (e.g. the use of multimodal approaches and Simplicial neural networks) in the biomedical field and precision medicine.

Y. Galluzzo—Now working at Expleo Italia S.p.a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax specification (1998)

    Google Scholar 

  2. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014)

    Google Scholar 

  3. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  5. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing Wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_4

    Chapter  Google Scholar 

  6. Noy, N., et al.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)

    Article  Google Scholar 

  7. Hogan, A., et al.: Knowledge graphs. Synth. Lect. Data Semant. Knowl. 12(2), 1–257 (2021)

    Article  Google Scholar 

  8. Lukovnikov, D., et al.: Neural network-based question answering over knowledge graphs on word and character level. In: Proceedings of the 26th International Conference on World Wide Web (2017)

    Google Scholar 

  9. Huang, X., et al.: Knowledge graph embedding based question answering. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (2019)

    Google Scholar 

  10. Purkayastha, S., et al.: Knowledge graph question answering via SPARQL silhouette generation. arXiv preprint arXiv:2109.09475 (2021)

  11. Zou, X.: A survey on application of knowledge graph. J. Phys. Conf. Ser. 1487(1), 012016 (2020)

    Article  Google Scholar 

  12. Choudhary, S., et al.: A survey of knowledge graph embedding and their applications. arXiv preprint arXiv:2107.07842 (2021)

  13. Dai, Y., et al.: A survey on knowledge graph embedding: approaches, applications and benchmarks. Electronics 9(5), 750 (2020)

    Article  Google Scholar 

  14. Wang, Q., et al.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  15. Mohamed, S.K., Nounu, A., Nováček, V.: Biological applications of knowledge graph embedding models. Brief. Bioinform. 22(2), 1679–1693 (2021)

    Article  Google Scholar 

  16. Van Melle, W.: MYCIN: a knowledge-based consultation program for infectious disease diagnosis. Int. J. Man-Mach. Stud. 10(3), 313–322 (1978)

    Article  Google Scholar 

  17. Karampatakis, S., Dimitriadis, A., Revenko, A., Blaschke, C.: Training NER models: knowledge graphs in the loop. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12124, pp. 135–139. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62327-2_23

    Chapter  Google Scholar 

  18. Hoffmann, R., et al.: Knowledge-based weak supervision for information extraction of overlapping relations. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (2011)

    Google Scholar 

  19. Yang, Y., et al.: Constructing public health evidence knowledge graph for decision-making support from COVID-19 literature of modelling study. J. Saf. Sci. Resilience 2(3), 146–156 (2021)

    Article  Google Scholar 

  20. Fassetti, F., Rombo, S.E., Serrao, C.: Discovering discriminative graph patterns from gene expression data. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing (2016)

    Google Scholar 

  21. Himmelstein, D.S., et al.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife 6, e26726 (2017)

    Article  Google Scholar 

  22. Ioannidis, V.N., et al.: DRKG-drug repurposing knowledge graph for COVID-19. arXiv preprint arXiv: 2010.09600 (2020)

  23. Rizvi, R.F., et al.: iDISK: the integrated DIetary supplements knowledge base. J. Am. Med. Inform. Assoc. 27(4), 539–548 (2020)

    Article  Google Scholar 

  24. Ogata, H., et al.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27(1), 29–34 (1999)

    Article  Google Scholar 

  25. Whirl-Carrillo, M., et al.: Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92(4), 414–417 (2012)

    Article  Google Scholar 

  26. Bastian, F.B., et al.: The Bgee suite: integrated curated expression atlas and comparative transcriptomics in animals. Nucleic Acids Res. 49(D1), D831–D847 (2021)

    Article  Google Scholar 

  27. Davis, A.P., et al.: The comparative toxicogenomics database: update 2019. Nucleic Acids Res. 47(D1), D948–D954 (2019)

    Article  Google Scholar 

  28. Gillespie, M., et al.: The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50(D1), D687–D692 (2022)

    Article  Google Scholar 

  29. Tweedie, S., et al.: Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res. 49(D1), D939–D946 (2021)

  30. The UniProt Consortium: UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49(D1), D480–D489 (2021)

    Article  Google Scholar 

  31. Kuhn, M., et al.: The SIDER database of drugs and side effects. Nucleic Acids Res. 44(D1), D1075–D1079 (2016)

    Article  Google Scholar 

  32. Santos, A., et al.: Comprehensive comparison of large-scale tissue expression datasets. PeerJ 3, e1054 (2015)

    Article  Google Scholar 

  33. Licata, L., et al.: SIGNOR 2.0, the SIGnaling network open resource 2.0: 2019 update. Nucleic Acids Res. 48(D1), D504–D510 (2020)

    Google Scholar 

  34. Szklarczyk, D., et al.: The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49(D1), D605–D612 (2021)

    Article  Google Scholar 

  35. Szklarczyk, D., et al.: STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44(D1), D380–D384 (2016)

    Article  Google Scholar 

  36. Jewison, T., et al.: SMPDB 2.0: big improvements to the small molecule pathway database. Nucleic Acids Res. 42(D1), D478–D484 (2014)

    Google Scholar 

  37. Chakravarty, D., et al.: OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 1, 1–16 (2017)

    Google Scholar 

  38. Chang, A., et al.: BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49(D1), D498–D508 (2021)

    Article  Google Scholar 

  39. Schriml, L.M., et al.: The human disease ontology 2022 update. Nucleic Acids Res. 50(D1), D1255–D1261 (2022)

    Article  Google Scholar 

  40. Jupp, S., et al.: A new ontology lookup service at EMBL-EBI. In: Malone, J. et al. (eds.) Proceedings of SWAT4LS International Conference (2015)

    Google Scholar 

  41. Gene Ontology Consortium: The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 49(D1), D325–D334 (2021)

    Article  Google Scholar 

  42. Kozomara, A., Griffiths-Jones, S.: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39(suppl_1), D152–D157 (2010)

    Google Scholar 

  43. Xie, B., et al.: miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics 29(5), 638–644 (2013)

    Article  Google Scholar 

  44. John, B., et al.: Human microRNA targets. PLoS Biol. 2(11), e363 (2004)

    Article  Google Scholar 

  45. Gong, J., et al.: Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum. Mutat. 33(1), 254–263 (2012)

    Article  Google Scholar 

  46. Hastings, J., et al.: ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 44(D1), D1214–D1219 (2016)

    Article  Google Scholar 

  47. Bordes, A., et al.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  48. Yang, B., et al.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  49. Malone, B., García-Durán, A., Niepert, M.: Knowledge graph completion to predict polypharmacy side effects. In: Auer, S., Vidal, M.-E. (eds.) DILS 2018. LNCS, vol. 11371, pp. 144–149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06016-9_14

    Chapter  Google Scholar 

  50. Nováček, V., Mohamed, S.K.: Predicting polypharmacy side-effects using knowledge graph embeddings. AMIA Summits Transl. Sci. Proc. 2020, 449 (2020)

    Google Scholar 

  51. Zitnik, M., Agrawal, M., Leskovec, J.: Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics 34(13), i457–i466 (2018)

    Article  Google Scholar 

  52. Ma, T., et al.: Drug similarity integration through attentive multi-view graph auto-encoders. arXiv preprint arXiv:1804.10850 (2018)

  53. Zhang, X.-M., et al.: Graph neural networks and their current applications in bioinformatics. Front. Genetics 12, 690049 (2021)

    Article  Google Scholar 

  54. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  55. Shen, Z., et al.: miRNA-disease association prediction with collaborative matrix factorization. Complexity 2017, 2498957 (2017)

    Google Scholar 

  56. Zheng, S., et al.: PharmKG: a dedicated knowledge graph benchmark for biomedical data mining. Briefings Bioinform. 22(4), bbaa344 (2021)

    Google Scholar 

  57. Zhu, Y., et al.: Drug knowledge bases and their applications in biomedical informatics research. Briefings Bioinform. 20(4), 1308–1321 (2019)

    Article  Google Scholar 

  58. Wishart, D.S., et al.: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 36(suppl_1), D901–D906 (2008)

    Google Scholar 

  59. Hecker, N., et al.: SuperTarget goes quantitative: update on drug-target interactions. Nucleic Acids Res. 40(D1), D1113–D1117 (2012)

    Article  Google Scholar 

  60. Kim, S., et al.: PubChem substance and compound databases. Nucleic Acids Res. 44(D1), D1202–D1213 (2016)

    Article  Google Scholar 

  61. Gaulton, A., et al.: ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(D1), D1100–D1107 (2012)

    Article  Google Scholar 

  62. Lin, X., et al.: KGNN: knowledge graph neural network for drug-drug interaction prediction. In: IJCAI, vol. 380 (2020)

    Google Scholar 

  63. Ren, Z.-H., et al.: BioDKG-DDI: predicting drug-drug interactions based on drug knowledge graph fusing biochemical information. Briefings Funct. Genomics 21(3), 216–229 (2022)

    Article  Google Scholar 

  64. Liu, C.-H., et al.: RetroGNN: approximating retrosynthesis by graph neural networks for de novo drug design. arXiv preprint arXiv:2011.13042 (2020)

  65. Wu, Y., et al.: BridgeDPI: a novel Graph Neural Network for predicting drug-protein interactions. Bioinformatics 38(9), 2571–2578 (2022)

    Article  Google Scholar 

  66. Chami, I., et al.: Hyperbolic graph convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  67. Chen, Y., Gel, Y.R., Poor, H.V.: BScNets: block simplicial complex neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36(6) (2022)

    Google Scholar 

  68. Harnoune, A., et al.: BERT based clinical knowledge extraction for biomedical knowledge graph construction and analysis. Comput. Methods Prog. Biomed. Update 1, 100042 (2021)

    Article  Google Scholar 

  69. Li, L., et al.: Real-world data medical knowledge graph: construction and applications. Artif. Intell. Med. 103, 101817 (2020)

    Article  Google Scholar 

  70. Gong, F., et al.: SMR: medical knowledge graph embedding for safe medicine recommendation. Big Data Res. 23, 100174 (2021)

    Article  Google Scholar 

  71. Zhang, Y., et al.: When radiology report generation meets knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34(07) (2020)

    Google Scholar 

  72. Forbes, S.A., et al.: COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45(D1), D777–D783 (2017)

    Article  Google Scholar 

  73. Xiang, Y., et al.: OntoEA: ontology-guided entity alignment via joint knowledge graph embedding. arXiv preprint arXiv:2105.07688 (2021)

  74. Guidotti, R., et al.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  75. Zhang, W., et al.: Interaction embeddings for prediction and explanation in knowledge graphs. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining (2019)

    Google Scholar 

  76. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 640–655. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_37

    Chapter  Google Scholar 

  77. Minervini, P., Costabello, L., Muñoz, E., Nováček, V., Vandenbussche, P.-Y.: Regularizing knowledge graph embeddings via equivalence and inversion axioms. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 668–683. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_40

    Chapter  Google Scholar 

  78. Helwe, C., Clavel, C., Suchanek, F.M.: Reasoning with transformer-based models: deep learning, but shallow reasoning. In: 3rd Conference on Automated Knowledge Base Construction (2021)

    Google Scholar 

  79. Xiong, Z., Huang, F., Wang, Z., Liu, S., Zhang, W.: A multimodal framework for improving in silico drug repositioning with the prior knowledge from knowledge graphs, p. 1. IEEE/ACM Trans. Comput. Biol, Bioinform (2021). https://doi.org/10.1109/TCBB.2021.3103595

    Book  Google Scholar 

  80. Zhu, C., et al.: Multimodal reasoning based on knowledge graph embedding for specific diseases. Bioinformatics 38(8), 2235–2245 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ylenia Galluzzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galluzzo, Y. (2022). A Review: Biological Insights on Knowledge Graphs. In: Chiusano, S., et al. New Trends in Database and Information Systems. ADBIS 2022. Communications in Computer and Information Science, vol 1652. Springer, Cham. https://doi.org/10.1007/978-3-031-15743-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15743-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15742-4

  • Online ISBN: 978-3-031-15743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics