Abstract
Finding anomalies in temporal relational databases is a difficult and challenging task, in particular if data is integrated from different sources. The problem is especially pressing in healthcare information systems, where temporal anomalies can pinpoint critical events such as erroneous drug administration or prescription. In this paper, we define three different temporal anomalies, which we call temporal redundancy, contradiction, and incompleteness. We define two different operators for each of these anomalies: the retrieval operator to retrieve all tuples of a relation that cause anomalous behaviour, and the labelling operator to annotate a temporal relation with additional information that marks normal and anomalous tuples. Finally, we present and evaluate different implementation techniques for the two operators for relational database systems.
Supported by Ministère de l’Économie et de l’Innovation – Québec and by the Autonomous Province of Bozen-Bolzano with research call “Research Südtirol/Alto Adige 2019” (project Enabling Industrial-Strength, Open-Source Temporal Query Processing – ISTeP).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
See: https://www.postgresql.org/docs/current/functions-aggregate.html for PostgreSQL or https://docs.microsoft.com/en-us/u-sql/functions/aggregate/array-agg for MS SQLServer.
References
Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Temporal data management – an overview. In: Zimányi, E. (ed.) eBISS 2017. LNBIP, vol. 324, pp. 51–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96655-7_3
Böhlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In: VLDB, pp. 180–191. Morgan Kaufmann (1996)
Bouros, P., Mamoulis, N., Tsitsigkos, D., Terrovitis, M.: In-memory interval joins. VLDB J. 30(4), 667–691 (2021). https://doi.org/10.1007/s00778-020-00639-0
Combi, C., Degani, S., Jensen, C.S.: Capturing temporal constraints in temporal ER models. In: Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 397–411. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87877-3_29
Combi, C., Keravnou-Papailiou, E., Shahar, Y.: Temporal Information Systems in Medicine, 1st edn. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-6543-1
Date, C.J., Darwen, H., Lorentzos, N.A.: Time and Relational Theory: Temporal Databases in the Relational Model and SQL. Morgan Kaufmann (2014)
Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S.: Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries. ACM Trans. Database Syst. 41(4), 26:1–26:46 (2016)
Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S., Moser, P.: Leveraging range joins for the computation of overlap joins. VLDB J. 31(1), 75–99 (2021). https://doi.org/10.1007/s00778-021-00692-3
Dignös, A., Glavic, B., Niu, X., Gamper, J., Böhlen, M.H.: Snapshot semantics for temporal multiset relations. Proc. VLDB Endow. 12(6), 639–652 (2019)
Dong, X.L., Kementsietsidis, A., Tan, W.: A time machine for information: looking back to look forward. SIGMOD Rec. 45(2), 23–32 (2016)
Ethier, J.F., Goyer, F., Fabry, P., Barton, A.: The prescription of drug ontology 2.0 (PDRO): more than the sum of its parts. Int. J. Environ. Res. Public Health 18(22), 12025 (2021)
Jensen, C.S., Snodgrass, R.T.: Timeslice operator. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 3120–3121. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_1426
Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L.A., Mark, R.: Mimic-iv (2020). https://doi.org/10.13026/A3WN-HQ05. https://physionet.org/content/mimiciv/0.4/
Kaufmann, M., et al.: Timeline index: a unified data structure for processing queries on temporal data in SAP HANA. In: SIGMOD Conference, pp. 1173–1184 (2013)
Khnaisser, C., Lavoie, L., Burgun, A., Ethier, J.-F.: Past indeterminacy in data warehouse design. In: Benslimane, D., Damiani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017. LNCS, vol. 10439, pp. 90–100. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64471-4_9
Kulkarni, K.G., Michels, J.: Temporal features in SQL: 2011. SIGMOD Rec. 41(3), 34–43 (2012)
Lorentzos, N.A., Johnson, R.G.: Extending relational algebra to manipulate temporal data. Inf. Syst. 13(3), 289–296 (1988)
Lorentzos, N.A., Mitsopoulos, Y.G.: SQL extension for interval data. IEEE Trans. Knowl. Data Eng. 9(3), 480–499 (1997)
Lyson, H.C., et al.: A qualitative analysis of outpatient medication use in community settings: observed safety vulnerabilities and recommendations for improved patient safety. J. Patient Saf. 17(4), e335–e342 (2019)
Özsoyoglu, G., Snodgrass, R.T.: Temporal and real-time databases: a survey. IEEE Trans. Knowl. Data Eng. 7(4), 513–532 (1995)
Piatov, D., Helmer, S.: Sweeping-based temporal aggregation. In: Gertz, M., et al. (eds.) SSTD 2017. LNCS, vol. 10411, pp. 125–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64367-0_7
Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for modern hardware. In: ICDE, pp. 1098–1109. IEEE Computer Society (2016)
Won, S.-M., Kim, M.-H., Kim, J.-M.: Administration management system design for smart phone applications in use of QR code. In: Park, J.J.J.H., Ng, J.K.-Y., Jeong, H.Y., Waluyo, B. (eds.) Multimedia and Ubiquitous Engineering. LNEE, vol. 240, pp. 585–592. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-6738-6_71
Zhou, X., Wang, F., Zaniolo, C.: Efficient temporal coalescing query support in relational database systems. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 676–686. Springer, Heidelberg (2006). https://doi.org/10.1007/11827405_66
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Khnaisser, C., Hamrouni, H., Blumenthal, D.B., Dignös, A., Gamper, J. (2022). Querying Temporal Anomalies in Healthcare Information Systems and Beyond. In: Chiusano, S., Cerquitelli, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2022. Lecture Notes in Computer Science, vol 13389. Springer, Cham. https://doi.org/10.1007/978-3-031-15740-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-15740-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15739-4
Online ISBN: 978-3-031-15740-0
eBook Packages: Computer ScienceComputer Science (R0)