Skip to main content

Syntactic ASP Forgetting with Forks

  • Conference paper
  • First Online:
Logic Programming and Nonmonotonic Reasoning (LPNMR 2022)

Abstract

In this paper, we present a syntactic transformation, called the unfolding operator, that allows forgetting an atom in a logic program (under ASP semantics). The main advantage of unfolding is that, unlike other syntactic operators, it is always applicable and guarantees strong persistence, that is, the result preserves the same stable models with respect to any context where the forgotten atom does not occur. The price for its completeness is that the result is an expression that may contain the fork operator. Yet, we illustrate how, in some cases, the application of fork properties may allow us to reduce the fork to a logic program, even in conditions that could not be treated before using the syntactic methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most ASP solvers allow hiding the extension of some chosen predicates.

  2. 2.

    As we will see, the cut operator support is a conjunction built from a finite set of rules that is sometimes negated. Generalising to infinite theories would require infinitary Boolean connectives.

  3. 3.

    This is, therefore, equivalent to not satisfying the \(\varOmega \) condition from [10].

  4. 4.

    In fact, [2] presented a more limited forgetting operator \({\texttt{f}}_{es}\) based on the external support.

  5. 5.

    In most cases, after unfolding \({\texttt{f}}_{c}\) as a logic program, we usually obtain not only a result strongly equivalent to \({\texttt{f}}_{sp}\) but also the same or a very close syntactic representation.

  6. 6.

    In fact, the as-dual set from [4] can be seen as an effect of the (CUT) rule. Moreover, our use of the latter was inspired by this as-dual construction.

  7. 7.

    Truth constants can be removed using trivial HT simplifications.

References

  1. Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Forgetting auxiliary atoms in forks. Artif. Intell. 275, 575–601 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguado, F., Cabalar, P., Fandinno, J., Pérez, G., Vidal, C.: A logic program transformation for strongly persistent forgetting - extended abstract. In: Proc. of the 37th International Conference on Logic Programming (ICLP 2021), Porto, Portugal (virtual event). Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 345, pp. 11–13 (2021)

    Google Scholar 

  3. Aguado, F., Cabalar, P., Pearce, D., Pérez, G., Vidal, C.: A denotational semantics for equilibrium logic. Theory Pract. Logic Program. 15(4–5), 620–634 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berthold, M., Gonçalves, R., Knorr, M., Leite, J.: A syntactic operator for forgetting that satisfies strong persistence. Theory Pract. Logic Program. 19(5–6), 1038–1055 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. Theory Pract. Logic Program. 7(6), 745–759 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilibrium logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 4–17. Springer, Heidelberg (2005). https://doi.org/10.1007/11595014_2

    Chapter  Google Scholar 

  7. Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74610-2_8

  8. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Ann. Math. Artif. Intell. 47(1–2), 79–101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonçalves, R., Knorr, M., Leite, J.: The ultimate guide to forgetting in answer set programming. In: KR, pp. 135–144. AAAI Press (2016)

    Google Scholar 

  10. Gonçalves, R., Knorr, M., Leite, J.: You can’t always forget what you want: on the limits of forgetting in answer set programming. In: Kaminka, G.A., et al. (eds.) Proceedings of 22nd European Conference on Artificial Intelligence (ECAI 2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 957–965. IOS Press (2016)

    Google Scholar 

  11. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. 42–56. Deutsche Akademie der Wissenschaften zu Berlin (1930), reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der Modernen Logik, Akademie-Verlag (1986)

    Google Scholar 

  12. Knorr, M., Alferes, J.J.: Preserving strong equivalence while forgetting. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 412–425. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0_29

  13. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 169–181. Springer-Verlag (1999). https://doi.org/10.1007/978-3-642-60085-2_17

  14. Mints, G.: Cut-free formulations for a quantified logic of here and there. Ann. Pure Appl. Logic 162(3), 237–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25, 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

Download references

Acknowledgements

We want to thank the anonymous reviewers for their suggestions that helped to improve this paper. Partially funded by Xunta de Galicia and the European Union, grants CITIC (ED431G 2019/01) and GPC ED431B 2022/33, and by the Spanish Ministry of Science and Innovation (grant PID2020-116201GB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Cabalar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C. (2022). Syntactic ASP Forgetting with Forks. In: Gottlob, G., Inclezan, D., Maratea, M. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2022. Lecture Notes in Computer Science(), vol 13416. Springer, Cham. https://doi.org/10.1007/978-3-031-15707-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15707-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15706-6

  • Online ISBN: 978-3-031-15707-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics