Skip to main content

Neurotrophic Factors in the Pathogenesis and Treatment of Diabetic Neuropathy

  • Chapter
  • First Online:
Diabetic Neuropathy

Part of the book series: Contemporary Diabetes ((CDI))

  • 739 Accesses

Abstract

It is increasingly recognized that diabetic neuropathy has a multifaceted pathogenesis, with risk factors such as hyperglycemia, dyslipidemia, and hypertension driving multiple downstream pathogenic mechanisms. In this respect, neuropathy is broadly similar to other long-term complications of diabetes such as nephropathy, retinopathy, and vasculopathy. However, the nervous system also requires support from an extensive system of factors that regulate survival, growth, and phenotype of neurons and their associated cells. Deficiencies in this neurotrophic support network arising from impaired supply, receptor expression, and/or signaling represent an additional burden to a nervous system that is already stressed by the primary systemic insults of diabetes. This chapter covers the preclinical and, where occasionally available, clinical evidence that diabetes disrupts neurotrophic support to the nervous system and that deficient neurotrophic support contributes to diabetic neuropathy. It also considers the opportunity emerging from these observations—that delivery of exogenous neurotrophic factors or other means of manipulating neurotrophic support may be viable approaches to preventing or reversing diabetic neuropathy. Both direct replacement of deficient trophic support and manipulation of downstream signaling pathways to strengthen the energetic status of the nervous system such that it tolerates and survives the continuing metabolic insults of diabetes have preclinical support as therapeutic approaches. In contrast, clinical trials to date have been limited and use of neurotrophic factors or their surrogates has yet to translate to clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howe CL, Mobley WC. Long-distance retrograde neurotrophic signaling. Curr Opin Neurobiol. 2005;15(1):40–8.

    Article  CAS  PubMed  Google Scholar 

  2. Levi-Montalcini R. The nerve growth factor 35 years later. Science. 1987;237(4819):1154–62.

    Article  CAS  PubMed  Google Scholar 

  3. LeviMontalcini R, et al. Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci. 1996;19(11):514–20.

    Article  CAS  PubMed  Google Scholar 

  4. Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci. 2018;91:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas PK. Classification, differential diagnosis, and staging of diabetic peripheral neuropathy. Diabetes. 1997;46:S54–7.

    Article  CAS  PubMed  Google Scholar 

  6. Goncalves NP, et al. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol. 2017;13(3):135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong J, et al. Mast cells in diabetes and diabetic wound healing. Adv Ther. 2020;37(11):4519–37.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Duraikannu A, et al. Beyond trophic factors: exploiting the intrinsic regenerative properties of adult neurons. Front Cell Neurosci. 2019;13:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nowak NC, et al. Cutaneous innervation in impaired diabetic wound healing. Transl Res. 2021;236:87–108.

    Article  CAS  PubMed Central  Google Scholar 

  10. Hempstead BL. Deciphering proneurotrophin actions. Handb Exp Pharmacol. 2014;220:17–32.

    Article  CAS  PubMed  Google Scholar 

  11. Marchetti L, et al. Fast-diffusing p75(NTR) monomers support apoptosis and growth cone collapse by neurotrophin ligands. Proc Natl Acad Sci U S A. 2019;116(43):21563–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fang X, et al. trkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors. J Neurosci. 2005;25(19):4868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindsay RM. Nerve growth-factors (Ngf, Bdnf) enhance axonal regeneration but are not required for survival of adult sensory neurons. J Neurosci. 1988;8(7):2394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lindsay RM, Harmar AJ. Nerve growth-factor regulates expression of neuropeptide genes in adult sensory neurons. Nature. 1989;337(6205):362–4.

    Article  CAS  PubMed  Google Scholar 

  15. Bennett DLH, et al. Endogenous nerve growth factor regulates the sensitivity of nociceptors in the adult rat. Eur J Neurosci. 1998;10(4):1282–91.

    Article  CAS  PubMed  Google Scholar 

  16. Chudler EH, Anderson LC, Byers MR. Nerve growth factor depletion by autoimmunization produces thermal hypoalgesia in adult rats. Brain Res. 1997;765(2):327–30.

    Article  CAS  PubMed  Google Scholar 

  17. Barker PA, et al. Nerve growth factor signaling and its contribution to pain. J Pain Res. 2020;13:1223–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lewin GR, Ritter AM, Mendell LM. Nerve growth-factor induced hyperalgesia in the neonatal and adult-rat. J Neurosci. 1993;13(5):2136–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petty BG, et al. The effect of systemically administered recombinant human nerve growth-factor in healthy-human subjects. Ann Neurol. 1994;36(2):244–6.

    Article  CAS  PubMed  Google Scholar 

  20. Fernyhough P, et al. Deficits in sciatic nerve neuropeptide content coincide with a reduction in target tissue nerve growth factor messenger RNA in streptozotocin-diabetic rats: effects of insulin treatment. Neuroscience. 1994;62(2):337–44.

    Article  CAS  PubMed  Google Scholar 

  21. Fernyhough P, et al. Altered neurotrophin mRNA levels in peripheral nerve and skeletal muscle of experimentally diabetic rats. J Neurochem. 1995;64(3):1231–7.

    Article  CAS  PubMed  Google Scholar 

  22. Fernyhough P, et al. Human recombinant nerve growth factor replaces deficient neurotrophic support in the diabetic rat. Eur J Neurosci. 1995;7(5):1107–10.

    Article  CAS  PubMed  Google Scholar 

  23. Hellweg R, Hartung HD. Endogenous levels of nerve growth-factor (Ngf) are altered in experimental diabetes-mellitus—a possible role for Ngf in the pathogenesis of diabetic neuropathy. J Neurosci Res. 1990;26(2):258–67.

    Article  CAS  PubMed  Google Scholar 

  24. Brewster WJ, et al. Reduced sciatic nerve substance P and calcitonin gene-related peptide in rats with short-term diabetes or central hypoxaemia co-exist with normal messenger RNA levels in the lumbar dorsal root ganglia. Neuroscience. 1994;58(2):323–30.

    Article  CAS  PubMed  Google Scholar 

  25. Calcutt NA, et al. Axonal transport of substance P-like immunoreactivity in ganglioside-treated diabetic rats. J Neurol Sci. 1990;96(2–3):283–91.

    Article  CAS  PubMed  Google Scholar 

  26. Diemel LT, et al. Expression of neuropeptides in experimental diabetes; effects of treatment with nerve growth factor or brain-derived neurotrophic factor. Brain Res Mol Brain Res. 1994;21(1–2):171–5.

    Article  CAS  PubMed  Google Scholar 

  27. Tomlinson DR, Fernyhough P, Diemel LT. Role of neurotrophins in diabetic neuropathy and treatment with nerve growth factors. Diabetes. 1997;46(Suppl 2):S43–9.

    Article  CAS  PubMed  Google Scholar 

  28. Robinson JP, et al. Axonal transport and tissue contents of substance P in rats with long-term streptozotocin-diabetes. Effects of the aldose reductase inhibitor ‘statil’. Brain Res. 1987;426(2):339–48.

    Article  CAS  PubMed  Google Scholar 

  29. Bennett GS, et al. Neurogenic cutaneous vasodilatation and plasma extravasation in diabetic rats: effect of insulin and nerve growth factor. Br J Pharmacol. 1998;124(7):1573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calcutt NA. Experimental models of painful diabetic neuropathy. J Neurol Sci. 2004;220(1–2):137–9.

    Article  PubMed  Google Scholar 

  31. Calcutt NA, et al. Elevated substance-P-like immunoreactivity levels in spinal dialysates during the formalin test in normal and diabetic rats. Brain Res. 2000;856(1–2):20–7.

    Article  CAS  PubMed  Google Scholar 

  32. Garrett NE, et al. alpha-Lipoic acid corrects neuropeptide deficits in diabetic rats via induction of trophic support. Neurosci Lett. 1997;222(3):191–4.

    Article  CAS  PubMed  Google Scholar 

  33. Calcutt NA, Chen P, Hua XY. Effects of diabetes on tissue content and evoked release of calcitonin gene-related peptide-like immunoreactivity from rat sensory nerves. Neurosci Lett. 1998;254(3):129–32.

    Article  CAS  PubMed  Google Scholar 

  34. Sango K, et al. Nerve growth factor (NGF) restores depletions of calcitonin gene-related peptide and substance P in sensory neurons from diabetic mice in vitro. J Neurol Sci. 1994;126(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  35. Unger JW, et al. Nerve growth factor (NGF) and diabetic neuropathy in the rat: morphological investigations of the sural nerve, dorsal root ganglion, and spinal cord. Exp Neurol. 1998;153(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  36. Apfel SC. Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol. 2002;50:393–413.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao M, et al. Efficacy and safety of nerve growth factor for the treatment of neurological diseases: a meta-analysis of 64 randomized controlled trials involving 6,297 patients. Neural Regen Res. 2015;10(5):819–28.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu YX, et al. Nerve growth factor improves the outcome of type 2 diabetes-induced hypotestosteronemia and erectile dysfunction. Reprod Sci. 2019;26(3):386–93.

    Article  CAS  PubMed  Google Scholar 

  39. Walwyn WM, et al. HSV-1-mediated NGF delivery delays nociceptive deficits in a genetic model of diabetic neuropathy. Exp Neurol. 2006;198(1):260–70.

    Article  CAS  PubMed  Google Scholar 

  40. Tsafack EG, et al. Antihypernociceptive and neuroprotective effects of the aqueous and methanol stem-bark extracts of Nauclea pobeguinii (Rubiaceae) on STZ-induced diabetic neuropathic pain. Evid Based Complement Alternat Med. 2021;2021:6637584.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Riaz S, et al. A vitamin D-3 derivative (CB1093) induces nerve growth factor and prevents neurotrophic deficits in streptozotocin-diabetic rats. Diabetologia. 1999;42(11):1308–13.

    Article  CAS  PubMed  Google Scholar 

  42. Calcutt NA, et al. Protection of sensory function in diabetic rats by Neotrofin. Eur J Pharmacol. 2006;534(1–3):187–93.

    Article  CAS  PubMed  Google Scholar 

  43. Hanaoka Y, et al. The therapeutic effects of 4-methylcatechol, a stimulator of endogenous nerve growth-factor synthesis, on experimental diabetic neuropathy in rats. J Neurol Sci. 1994;122(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  44. Comelli F, et al. Rimonabant, a cannabinoid CB1 receptor antagonist, attenuates mechanical allodynia and counteracts oxidative stress and nerve growth factor deficit in diabetic mice. Eur J Pharmacol. 2010;637(1–3):62–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, et al. Tadalafil promotes the recovery of peripheral neuropathy in type II diabetic mice. PLoS One. 2016;11(7):e0159665.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Malerba F, et al. Functional characterization of human ProNGF and NGF mutants: identification of NGF P61SR100E as a “painless” lead investigational candidate for therapeutic applications. PLoS One. 2015;10(9):e0136425.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ro LS, et al. Effect of NGF and anti-NGF on neuropathic pain in rats following chronic constriction injury of the sciatic nerve. Pain. 1999;79(2–3):265–74.

    Article  CAS  PubMed  Google Scholar 

  48. Sevcik MA, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain. 2005;115(1–2):128–41.

    Article  CAS  PubMed  Google Scholar 

  49. Dietz BW, et al. Targeting nerve growth factor for pain management in osteoarthritis-clinical efficacy and safety. Rheum Dis Clin North Am. 2021;47:181–95.

    Article  PubMed  Google Scholar 

  50. Doshi TL, Tesarz J, Cohen SP. Nerve growth factor inhibitors for low back pain: balancing the risks and benefits. Pain. 2020;161(9):1941–2.

    Article  CAS  PubMed  Google Scholar 

  51. Markman JD, et al. Tanezumab for chronic low back pain: a randomized, double-blind, placebo- and active-controlled, phase 3 study of efficacy and safety. Pain. 2020;161(9):2068–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patel MK, Kaye AD, Urman RD. Tanezumab: therapy targeting nerve growth factor in pain pathogenesis. J Anaesthesiol Clin Pharmacol. 2018;34(1):111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bramson C, et al. Exploring the role of tanezumab as a novel treatment for the relief of neuropathic pain. Pain Med. 2015;16(6):1163–76.

    Article  PubMed  Google Scholar 

  54. Nitta A, et al. Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol. 2002;24(5):695–701.

    Article  CAS  PubMed  Google Scholar 

  55. Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol Res. 2020;160:105083.

    Article  CAS  PubMed  Google Scholar 

  56. Afarid M, Namvar E, Sanie-Jahromi F. Diabetic retinopathy and BDNF: a review on its molecular basis and clinical applications. J Ophthalmol. 2020;2020:1602739.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Richner M, et al. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol. 2014;50(3):945–70.

    Article  CAS  PubMed  Google Scholar 

  58. Garcia N, et al. Localization of brain-derived neurotrophic factor, neurotrophin-4, tropomyosin-related kinase b receptor, and p75NTR receptor by high-resolution immunohistochemistry on the adult mouse neuromuscular junction. J Peripher Nerv Syst. 2010;15(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  59. Garraway SM, Petruska JC, Mendell LM. BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs. Eur J Neurosci. 2003;18(9):2467–76.

    Article  PubMed  Google Scholar 

  60. Kerr BJ, et al. Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci. 1999;19(12):5138–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lever IJ, et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. J Neurosci. 2001;21(12):4469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Slack SE, et al. Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci. 2004;20(7):1769–78.

    Article  PubMed  Google Scholar 

  63. Copray S, et al. Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associated with elevated expression of brain-derived neurotrophic factor mRNA in muscle fibers and activated satellite cells. Exp Neurol. 2000;161(2):597–608.

    Article  CAS  PubMed  Google Scholar 

  64. Mizisin AP, et al. BDNF attenuates functional and structural disorders in nerves of galactose-fed rats. J Neuropathol Exp Neurol. 1997;56(12):1290–301.

    Article  CAS  PubMed  Google Scholar 

  65. Fernyhough P, Maeda K, Tomlinson DR. Brain-derived neurotrophic factor mRNA levels are up-regulated in hindlimb skeletal muscle of diabetic rats: effect of denervation. Exp Neurol. 1996;141(2):297–303.

    Article  CAS  PubMed  Google Scholar 

  66. Li RL, et al. Angelica injection promotes peripheral nerve structure and function recovery with increased expressions of nerve growth factor and brain derived neurotrophic factor in diabetic rats. Curr Neurovasc Res. 2010;7(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  67. Wang Q, et al. Danhong injection alleviates mechanical allodynia via inhibiting ERK1/2 activation and elevates BDNF level in sciatic nerve in diabetic rat. Evid Based Complement Alternat Med. 2018;2018:5798453.

    PubMed  PubMed Central  Google Scholar 

  68. Zhou GJ, et al. Ameliorative effect of berberine on neonatally induced type 2 diabetic neuropathy via modulation of BDNF, IGF-1, PPAR-gamma, and AMPK expressions. Dose Response. 2019;17(3):1559325819862449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang CH, et al. The Akt/mTOR cascade mediates high glucose-induced reductions in BDNF via DNMT1 in Schwann cells in diabetic peripheral neuropathy. Exp Cell Res. 2019;383(1):111502.

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez-Pena A, et al. Expression of neurotrophins and their receptors in sciatic nerve of experimentally diabetic rats. Neurosci Lett. 1995;200(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  71. Mizisin AP, et al. Decreased accumulation of endogenous brain-derived neurotrophic factor against constricting sciatic nerve ligatures in streptozotocin-diabetic and galactose-fed rats. Neurosci Lett. 1999;263(2–3):149–52.

    Article  CAS  PubMed  Google Scholar 

  72. Calcutt NA, Freshwater JD, Mizisin AP. Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor. Diabetologia. 2004;47(4):718–24.

    Article  CAS  PubMed  Google Scholar 

  73. Wellmer A, et al. A double-blind placebo-controlled clinical trial of recombinant human brain-derived neurotrophic factor (rhBDNF) in diabetic polyneuropathy. J Peripher Nerv Syst. 2001;6(4):204–10.

    Article  CAS  PubMed  Google Scholar 

  74. Ge HX, et al. Dihydromyricetin affects BDNF levels in the nervous system in rats with comorbid diabetic neuropathic pain and depression. Sci Rep. 2019;9:14619.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Maekawa T, et al. Synthesis and biological activity of novel 5-(omega-aryloxyalkyl)oxazole derivatives as brain-derived neurotrophic factor inducers. Chem Pharm Bull. 2003;51(5):565–73.

    Article  CAS  Google Scholar 

  76. Fobian K, et al. Peptides derived from the solvent-exposed loops 3 and 4 of BDNF bind TrkB and p75(NTR) receptors and stimulate neurite outgrowth and survival. J Neurosci Res. 2010;88(6):1170–81.

    CAS  PubMed  Google Scholar 

  77. Yang SH, et al. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics. 2020;10(18):8227–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee-Kubli CAG, Calcutt NA. Altered rate-dependent depression of the spinal H-reflex as an indicator of spinal disinhibition in models of neuropathic pain. Pain. 2014;155(2):250–60.

    Article  PubMed  Google Scholar 

  79. Morgado C, et al. Minocycline completely reverses mechanical hyperalgesia in diabetic rats through microglia-induced changes in the expression of the potassium chloride co-transporter 2 (KCC2) at the spinal cord. Diabetes Obes Metab. 2011;13(2):150–9.

    Article  CAS  PubMed  Google Scholar 

  80. Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast. 2013;2013:429815.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tsuda M. Microglia-mediated regulation of neuropathic pain: molecular and cellular mechanisms. Biol Pharm Bull. 2019;42(12):1959–68.

    Article  CAS  PubMed  Google Scholar 

  82. Watkins LR, Maier SF. When good pain turns bad. Curr Dir Psychol Sci. 2003;12(6):232–6.

    Article  Google Scholar 

  83. Malcangio M, Montague K. Neuroimmune communication in chemotherapy-induced neuropathic pain. Glia. 2017;65:E96–7.

    Google Scholar 

  84. Cho HJ, et al. Changes in brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia, spinal cord, and gracile nuclei following cut or crush injuries. Exp Neurol. 1998;154(1):224–30.

    Article  CAS  Google Scholar 

  85. Mannion RJ, et al. Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A. 1999;96(16):9385–90.

    Article  CAS  PubMed Central  Google Scholar 

  86. Lee-Kubli C, et al. The H-reflex as a biomarker for spinal disinhibition in painful diabetic neuropathy. Curr Diab Rep. 2018;18(1):1.

    Article  PubMed Central  Google Scholar 

  87. Miao B, et al. The implication of transient receptor potential canonical 6 in BDNF-induced mechanical allodynia in rat model of diabetic neuropathic pain. Life Sci. 2021;273:119308.

    Article  CAS  PubMed  Google Scholar 

  88. Daulhac L, et al. Phosphorylation of spinal N-methyl-D-aspartate receptor NR1 subunits by extracellular signal-regulated kinase in dorsal horn neurons and microglia contributes to diabetes-induced painful neuropathy. Eur J Pain. 2011;15(2):169.e1–169.e12.

    Article  Google Scholar 

  89. Rivera C, et al. BDNF-induced TrkB activation down-regulates the K+-Cl- cotransporter KCC2 and impairs neuronal Cl- extrusion. J Cell Biol. 2002;159(5):747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rivera C, Voipio J, Kaila K. Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol. 2005;562(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  91. Miletic G, Miletic V. Loose ligation of the sciatic nerve is associated with TrkB receptor-dependent decreases in KCC2 protein levels in the ipsilateral spinal dorsal horn. Pain. 2008;137(3):532–9.

    Article  CAS  PubMed  Google Scholar 

  92. Jolivalt CG, et al. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters. Pain. 2008;140(1):48–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Morgado C, Pinto-Ribeiro F, Tavares I. Diabetes affects the expression of GABA and potassium chloride cotransporter in the spinal cord: a study in streptozotocin diabetic rats. Neurosci Lett. 2008;438(1):102–6.

    Article  CAS  PubMed  Google Scholar 

  94. Boulenguez P, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010;16(3):302–7.

    Article  CAS  PubMed  Google Scholar 

  95. Hernandez-Reyes JE, et al. alpha(5)GABA(A) receptors play a pronociceptive role and avoid the rate-dependent depression of the Hoffmann reflex in diabetic neuropathic pain and reduce primary afferent excitability. Pain. 2019;160(6):1448–58.

    Article  CAS  PubMed  Google Scholar 

  96. Lee-Kubli CA, et al. Pharmacological modulation of rate-dependent depression of the spinal H-reflex predicts therapeutic efficacy against painful diabetic neuropathy. Diagnostics. 2021;11(2):283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Marshall AG, et al. Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes. 2017;66(5):1380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Worthington A, et al. Spinal inhibitory dysfunction in patients with painful or painless diabetic neuropathy. Diabetes Care. 2021;44(8):1835–41.

    Article  PubMed  Google Scholar 

  99. Barbacid M. The Trk family of neurotrophin receptors. J Neurobiol. 1994;25(11):1386–403.

    Article  CAS  PubMed  Google Scholar 

  100. Lindsay RM. Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview. Philos Trans R Soc Lond B Biol Sci. 1996;351(1338):365–73.

    Article  CAS  PubMed  Google Scholar 

  101. Lewis MA, et al. Identification and characterization of compounds that potentiate NT-3-mediated Trk receptor activity. Mol Pharmacol. 2006;69(4):1396–404.

    Article  CAS  PubMed  Google Scholar 

  102. Distefano PS, et al. The neurotrophins Bdnf, Nt-3, and Ngf display distinct patterns of retrograde axonal-transport in peripheral and central neurons. Neuron. 1992;8(5):983–93.

    Article  CAS  PubMed  Google Scholar 

  103. Altar CA, DiStefano PS. Neurotrophin trafficking by anterograde transport. Trends Neurosci. 1998;21(10):433–7.

    Article  CAS  PubMed  Google Scholar 

  104. von Bartheld CS, Wang XX, Butowt R. Anterograde axonal transport, transcytosis, and recycling of neurotrophic factors—the concept of trophic currencies in neural networks. Mol Neurobiol. 2001;24(1–3):1–28.

    Article  Google Scholar 

  105. Naito Y, Lee AK, Takahashi H. Emerging roles of the neurotrophin receptor TrkC in synapse organization. Neurosci Res. 2017;116:10–7.

    Article  CAS  PubMed  Google Scholar 

  106. Boyce VS, Mendell LM. Neurotrophins and spinal circuit function. Front Neural Circuits. 2014;8:59.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Andreassen CS, et al. Expression of neurotrophic factors in diabetic muscle-relation to neuropathy and muscle strength. Brain. 2009;132:2724–33.

    Article  CAS  PubMed  Google Scholar 

  108. Fernyhough P, Diemel LT, Tomlinson DR. Target tissue production and axonal transport of neurotrophin-3 are reduced in streptozotocin-diabetic rats. Diabetologia. 1998;41(3):300–6.

    Article  CAS  PubMed  Google Scholar 

  109. Ihara C, et al. Decreased neurotrophin-3 expression in skeletal muscles of streptozotocin-induced diabetic rats. Neuropeptides. 1996;30(4):309–12.

    Article  CAS  PubMed  Google Scholar 

  110. Cai F, Tomlinson DR, Fernyhough P. Elevated expression of neurotrophin-3 mRNA in sensory nerve of streptozotocin-diabetic rats. Neurosci Lett. 1999;263(2–3):81–4.

    Article  CAS  PubMed  Google Scholar 

  111. Kennedy AJ, et al. Neurotrophin-3 is increased in skin in human diabetic neuropathy. J Neurol Neurosurg Psychiatry. 1998;65(3):393–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Terenghi G, et al. trkA and trkC expression is increased in human diabetic skin. Neurosci Lett. 1997;228(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  113. Mizisin AP, et al. Neurotrophin-3 reverses nerve conduction velocity deficits in streptozotocin-diabetic rats. J Peripher Nerv Syst. 1999;4(3–4):211–21.

    CAS  PubMed  Google Scholar 

  114. Mizisin AP, et al. NT-3 attenuates functional and structural disorders in sensory nerves of galactose-fed rats. J Neuropathol Exp Neurol. 1998;57(9):803–13.

    Article  CAS  PubMed  Google Scholar 

  115. Middlemas A, et al. Enhanced activation of axonally transported stress-activated protein kinases in peripheral nerve in diabetic neuropathy is prevented by neurotrophin-3. Brain. 2003;126:1671–82.

    Article  CAS  PubMed  Google Scholar 

  116. Schmidt RE, et al. Effect of NGF and neurotrophin-3 treatment on experimental diabetic autonomic neuropathy. J Neuropathol Exp Neurol. 2001;60(3):263–73.

    Article  CAS  PubMed  Google Scholar 

  117. Li HW, et al. Muscle NT-3 levels increased by exercise training contribute to the improvement in caudal nerve conduction velocity in diabetic rats. Mol Med Rep. 2012;6(1):69–74.

    CAS  PubMed  Google Scholar 

  118. Christianson JA, et al. Neurotrophic modulation of myelinated cutaneous innervation and mechanical sensory loss in diabetic mice. Neuroscience. 2007;145(1):303–13.

    Article  CAS  PubMed  Google Scholar 

  119. Huang TJ, et al. Diabetes-induced alterations in calcium homeostasis in sensory neurones of streptozotocin-diabetic rats are restricted to lumbar ganglia and are prevented by neurotrophin-3. Diabetologia. 2002;45(4):560–70.

    Article  CAS  PubMed  Google Scholar 

  120. Huang TJ, et al. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp Neurol. 2005;194(1):279–83.

    Article  CAS  PubMed  Google Scholar 

  121. Sayers NM, et al. Neurotrophin-3 prevents the proximal accumulation of neurofilament proteins in sensory neurons of streptozocin-induced diabetic rats. Diabetes. 2003;52(9):2372–80.

    Article  CAS  PubMed  Google Scholar 

  122. Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci. 2003;116(19):3855–62.

    Article  CAS  PubMed  Google Scholar 

  123. Paratcha G, Ledda F, Ibanez CF. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell. 2003;113(7):867–79.

    Article  CAS  PubMed  Google Scholar 

  124. Donnelly CR, Pierchala BA. Plasma membrane localization of the GFL receptor components: a nexus for receptor crosstalk. Cell Tissue Res. 2020;382(1):57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stanga S, Boido M, Kienlen-Campard P. How to build and to protect the neuromuscular junction: the role of the glial cell line-derived neurotrophic factor. Int J Mol Sci. 2021;22(1):136.

    Article  CAS  Google Scholar 

  126. Zahavi EE, et al. A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions. J Cell Sci. 2015;128(6):1241–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Enomoto H, et al. RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons. Development. 2001;128(20):3963–74.

    Article  CAS  PubMed  Google Scholar 

  128. Luo WQ, et al. Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron. 2009;64(6):841–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Luo WQ, et al. A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron. 2007;54(5):739–54.

    Article  CAS  PubMed  Google Scholar 

  130. Molliver DC, et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron. 1997;19(4):849–61.

    Article  CAS  PubMed  Google Scholar 

  131. Bar KJ, et al. GDNF and its receptor component Ret in injured human nerves and dorsal root ganglia. Neuroreport. 1998;9(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  132. Hoke A, et al. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol. 2002;173(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  133. Christianson JA, Riekhof JT, Wright DE. Restorative effects of neurotrophin treatment on diabetes-induced cutaneous axon loss in mice. Exp Neurol. 2003;179(2):188–99.

    Article  CAS  PubMed  Google Scholar 

  134. Saudek F, et al. Preserved expression of skin neurotrophic factors in advanced diabetic neuropathy does not lead to neural regeneration despite pancreas and kidney transplantation. J Diabetes Res. 2018;2018:2309108.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu GS, et al. Peripheral gene transfer of glial cell-derived neurotrophic factor ameliorates neuropathic deficits in diabetic rats. Hum Gene Ther. 2009;20(7):715–27.

    Article  CAS  PubMed  Google Scholar 

  136. Akkina SK, Patterson CL, Wright DE. GDNF rescues nonpeptidergic unmyelinated primary afferents in streptozotocin-treated diabetic mice. Exp Neurol. 2001;167(1):173–82.

    Article  CAS  PubMed  Google Scholar 

  137. Christianson JA, et al. Beneficial actions of neurotrophin treatment on diabetes-induced hypoalgesia in mice. J Pain. 2003;4(9):493–504.

    Article  CAS  PubMed  Google Scholar 

  138. Viisanen H, et al. Novel RET agonist for the treatment of experimental neuropathies. Mol Pain. 2020;16:1744806920950866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hedstrom KL, et al. Treating small fiber neuropathy by topical application of a small molecule modulator of ligand-induced GFR alpha/RET receptor signaling. Proc Natl Acad Sci U S A. 2014;111(6):2325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Boulton TG, Stahl N, Yancopoulos GD. Ciliary neurotrophic factor leukemia inhibitory factor interleukin-6 oncostatin-M family of cytokines induces tyrosine phosphorylation of a common set of proteins overlapping those induced by other cytokines and growth-factors. J Biol Chem. 1994;269(15):11648–55.

    Article  CAS  PubMed  Google Scholar 

  141. Pasquin S, Sharma M, Gauchat JF. Cytokines of the LIF/CNTF family and metabolism. Cytokine. 2016;82:122–4.

    Article  CAS  PubMed  Google Scholar 

  142. Gloaguen I, et al. Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc Natl Acad Sci U S A. 1997;94(12):6456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Davis S, et al. The receptor for ciliary neurotrophic factor. Science. 1991;253(5015):59–63.

    Article  CAS  PubMed  Google Scholar 

  144. Schuster B, et al. Signaling of human ciliary neurotrophic factor (CNTF) revisited—the interleukin-6 receptor can serve as an alpha-receptor for CNTF. J Biol Chem. 2003;278(11):9528–35.

    Article  CAS  PubMed  Google Scholar 

  145. Dobrea GM, Unnerstall JR, Rao MS. The expression of Cntf message and immunoreactivity in the central and peripheral nervous-system of the rat. Dev Brain Res. 1992;66(2):209–19.

    Article  CAS  Google Scholar 

  146. Rende M, et al. Immunolocalization of ciliary neuronotrophic factor in adult-rat sciatic-nerve. Glia. 1992;5(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  147. Lee DA, Zurawel RH, Windebank AJ. Ciliary neurotrophic factor expression in Schwann-cells is induced by axonal contact. J Neurochem. 1995;65(2):564–8.

    Article  CAS  PubMed  Google Scholar 

  148. Sendtner M, et al. Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve-section. Nature. 1992;360(6406):757–9.

    Article  CAS  PubMed  Google Scholar 

  149. Smith GM, et al. Temporal and spatial expression of ciliary neurotrophic factor after peripheral-nerve injury. Exp Neurol. 1993;121(2):239–47.

    Article  CAS  PubMed  Google Scholar 

  150. Gravel C, et al. Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat Med. 1997;3(7):765–70.

    Article  CAS  PubMed  Google Scholar 

  151. Sendtner M, et al. Effect of ciliary neurotrophic factor (Cntf) on motoneuron survival. J Cell Sci. 1991;15:103–9.

    Article  CAS  Google Scholar 

  152. Sendtner M, et al. Endogenous ciliary neurotrophic factor is a lesion factor for axotomized motoneurons in adult mice. J Neurosci. 1997;17(18):6999–7006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Friedman B, et al. Regulation of ciliary neurotrophic factor expression in myelin-related Schwann-cells invivo. Neuron. 1992;9(2):295–305.

    Article  CAS  PubMed  Google Scholar 

  154. Godinho MJ, et al. Regeneration of adult rat sensory and motor neuron axons through chimeric peroneal nerve grafts containing donor Schwann cells engineered to express different neurotrophic factors. Exp Neurol. 2020;330:113355.

    Article  CAS  PubMed  Google Scholar 

  155. Porzionato A, et al. Development of oxidized polyvinyl alcohol-based nerve conduits coupled with the ciliary neurotrophic factor. Materials (Basel). 2019;12(12):1996.

    Article  CAS  PubMed  Google Scholar 

  156. Masu Y, et al. Disruption of the Cntf gene results in motor-neuron degeneration. Nature. 1993;365(6441):27–32.

    Article  CAS  PubMed  Google Scholar 

  157. Gatzinsky KP, et al. Early onset of degenerative changes at nodes of Ranvier in alpha-motor axons of Cntf null (-/-) mutant mice. Glia. 2003;42(4):340–9.

    Article  PubMed  Google Scholar 

  158. Calcutt NA, et al. Reduced ciliary neuronotrophic factor-like activity in nerves from diabetic or galactose-fed rats. Brain Res. 1992;575(2):320–4.

    Article  CAS  PubMed  Google Scholar 

  159. Mizisin AP, et al. Aldose reductase inhibition increases CNTF-like bioactivity and protein in sciatic nerves from galactose-fed and normal rats. Diabetes. 1997;46(4):647–52.

    Article  CAS  PubMed  Google Scholar 

  160. Nakamura H, et al. Olmesartan medoxomil ameliorates sciatic nerve regeneration in diabetic rats. Neuroreport. 2009;20(16):1481–5.

    Article  CAS  PubMed  Google Scholar 

  161. Jiang Y, et al. Novel sites of aldose reductase immunolocalization in normal and streptozotocin-diabetic rats. J Peripher Nerv Syst. 2006;11(4):274–85.

    Article  CAS  PubMed  Google Scholar 

  162. Canclini L, et al. Association of microtubules and axonal RNA transferred from myelinating Schwann cells in rat sciatic nerve. PLoS One. 2020;15(5):e0233651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Court FA, et al. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci. 2008;28(43):11024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Court FA, et al. Axonal autonomous and glial-dependent processes participate in axonal degeneration. Glia. 2011;59:S73.

    Google Scholar 

  165. Duncan A, et al. Transfer of horseradish peroxidase from oligodendrocyte to axon in the myelinating neonatal rat optic nerve: artefact or transcellular exchange? Glia. 1996;17(4):349–55.

    Article  CAS  PubMed  Google Scholar 

  166. Lasek RJ, Gainer H, Barker J. Transfer of newly synthesized proteins from Schwann-cells to squid giant-axon. Anat Rec. 1974;178(2):398.

    Google Scholar 

  167. Lopez-Leal R, Diaz P, Court FA. In vitro analysis of the role of Schwann cells on axonal degeneration and regeneration using sensory neurons from dorsal root ganglia. Methods Mol Biol. 2018;1739:255–67.

    Article  CAS  PubMed  Google Scholar 

  168. Shakhbazau A, et al. Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains. Mol Biol Rep. 2016;43(6):495–507.

    Article  CAS  Google Scholar 

  169. Sotelo JR, et al. Glia to axon RNA transfer. Dev Neurobiol. 2014;74(3):292–302.

    Article  CAS  PubMed  Google Scholar 

  170. Mizisin AP, et al. Ciliary neurotrophic factor improves nerve conduction and ameliorates regeneration deficits in diabetic rats. Diabetes. 2004;53(7):1807–12.

    Article  CAS  PubMed  Google Scholar 

  171. Gao N, et al. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea. J Clin Investig. 2016;126(5):1998–2011.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Ma MM, et al. Involvement of ciliary neurotrophic factor in early diabetic retinal neuropathy in streptozotocin-induced diabetic rats. Eye. 2018;32(9):1463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Saleh A, et al. Ciliary neurotrophic factor activates NF-kappa B to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology. 2013;65:65–73.

    Article  CAS  PubMed  Google Scholar 

  174. Chowdhury SR, et al. Ciliary neurotrophic factor reverses aberrant mitochondrial bioenergetics through the JAK/STAT pathway in cultured sensory neurons derived from streptozotocin-induced diabetic rodents. Cell Mol Neurobiol. 2014;34(5):643–9.

    Article  CAS  PubMed  Google Scholar 

  175. Lotz B, et al. A double-blind placebo-controlled clinical trial of subcutaneous recombinant human ciliary neurotrophic factor (rHCNTF) in amyotrophic lateral sclerosis. Neurology. 1996;46(5):1244–9.

    Article  Google Scholar 

  176. Ettinger MP, et al. Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults—a randomized, dose-ranging study. JAMA. 2003;289(14):1826–32.

    Article  CAS  PubMed  Google Scholar 

  177. Chew EY, et al. Effect of ciliary neurotrophic factor on retinal neurodegeneration in patients with macular telangiectasia type 2 a randomized clinical trial. Ophthalmology. 2019;126(4):540–9.

    Article  PubMed  Google Scholar 

  178. Kauper K, et al. Two-year intraocular delivery of ciliary neurotrophic factor by encapsulated cell technology implants in patients with chronic retinal degenerative diseases. Invest Ophthalmol Vis Sci. 2012;53(12):7484–91.

    Article  CAS  PubMed  Google Scholar 

  179. Rhode SC, Beier JP, Ruhl T. Adipose tissue stem cells in peripheral nerve regeneration–in vitro and in vivo. J Neurosci Res. 2021;99(2):545–60.

    Article  CAS  PubMed  Google Scholar 

  180. Lara-Ramirez R, et al. Expression of interleukin-6 receptor alpha in normal and injured rat sciatic nerve. Neuroscience. 2008;152(3):601–8.

    Article  CAS  PubMed  Google Scholar 

  181. Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. BBA-Mol Cell Res. 2016;1863(6):1218–27.

    CAS  Google Scholar 

  182. Bolin LM, et al. Interleukin-6 production by Schwann-cells and induction in sciatic-nerve injury. J Neurochem. 1995;64(2):850–8.

    Article  CAS  PubMed  Google Scholar 

  183. Gaudet AD, Popovich PG, Ramer MS. Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation. 2011;8:110.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Hirota H, et al. Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med. 1996;183(6):2627–34.

    Article  CAS  PubMed  Google Scholar 

  185. Andriambeloson E, et al. Interleukin-6 attenuates the development of experimental diabetes-related neuropathy. Neuropathology. 2006;26(1):32–42.

    Article  PubMed  Google Scholar 

  186. Cameron NE, Cotter MA. The neurocytokine, interleukin-6, corrects nerve dysfunction in experimental diabetes. Exp Neurol. 2007;207(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  187. Cotter MA, et al. Effects of interleukin-6 treatment on neurovascular function, nerve perfusion and vascular endothelium in diabetic rats. Diabetes Obes Metab. 2010;12(8):689–99.

    Article  CAS  PubMed  Google Scholar 

  188. Cox AA, et al. Low-dose pulsatile interleukin-6 as a treatment option for diabetic peripheral neuropathy. Front Endocrinol. 2017;8:89.

    Article  Google Scholar 

  189. Bishnoi M, et al. Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1 (TRPV1) and inflammatory mediators. Mol Pain. 2011;7:52.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Brini AT, et al. Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain. Sci Rep. 2017;7(1):9904.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Toledo-Corral CM, Banner LR. Early changes of LIFR and gp130 in sciatic nerve and muscle of diabetic mice. Acta Histochem. 2012;114(2):159–65.

    Article  CAS  PubMed  Google Scholar 

  192. Niemi JP, et al. Injury-induced gp130 cytokine signaling in peripheral ganglia is reduced in diabetes mellitus. Exp Neurol. 2017;296:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Muona P, et al. Glucose transporters of rat peripheral-nerve—differential expression of Glut1 gene by Schwann-cells and perineurial cells in vivo and in vitro. Diabetes. 1992;41(12):1587–96.

    Article  CAS  PubMed  Google Scholar 

  194. Magnani P, et al. Glucose transporters in rat peripheral nerve: paranodal expression of GLUT1 and GLUT3. Metabolism. 1996;45(12):1466–73.

    Article  CAS  PubMed  Google Scholar 

  195. Yagihashi S. Glucotoxic mechanisms and related therapeutic approaches. Int Rev Neurobiol. 2016;127:121–49.

    Article  CAS  PubMed  Google Scholar 

  196. Niimi N, et al. Aldose reductase and the polyol pathway in Schwann cells: old and new problems. Int J Mol Sci. 2021;22(3):1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tomlinson DR, Gardiner NJ. Diabetic neuropathies: components of etiology. J Peripher Nerv Syst. 2008;13(2):112–21.

    Article  CAS  PubMed  Google Scholar 

  198. Jolivalt CG, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer’s disease and correction by insulin. J Neurosci Res. 2008;86(15):3265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. King MR, et al. Activation of the insulin-signaling pathway in sciatic nerve and hippocampus of type 1 diabetic rats. Neuroscience. 2015;303:220–8.

    Article  CAS  PubMed  Google Scholar 

  200. Arvanitakis Z, et al. Brain insulin signaling, Alzheimer disease pathology, and cognitive function. Ann Neurol. 2020;88(3):513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ferreira ST. Brain insulin, insulin-like growth factor 1 and glucagon-like peptide 1 signalling in Alzheimer’s disease. J Neuroendocrinol. 2021;33(4):e12959.

    Article  CAS  PubMed  Google Scholar 

  202. Rebelos E, et al. Brain glucose metabolism in health, obesity, and cognitive decline-does insulin have anything to do with it? A narrative review. J Clin Med. 2021;10(7):1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sugimoto K, et al. Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes Metab Res Rev. 2000;16(5):354–63.

    Article  CAS  PubMed  Google Scholar 

  204. Brussee V, Cunningham FA, Zochodne DW. Direct insulin signaling of neurons reverses diabetic neuropathy. Diabetes. 2004;53(7):1824–30.

    Article  CAS  PubMed  Google Scholar 

  205. Sugimoto K, Murakawa Y, Sima AA. Expression and localization of insulin receptor in rat dorsal root ganglion and spinal cord. J Peripher Nerv Syst. 2002;7(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  206. Hackett AR, Strickland A, Milbrandt J. Disrupting insulin signaling in Schwann cells impairs myelination and induces a sensory neuropathy. Glia. 2020;68(5):963–78.

    Article  PubMed  Google Scholar 

  207. Huang TJ, Verkhratsky A, Fernyhough P. Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons. Mol Cell Neurosci. 2005;28(1):42–54.

    Article  CAS  PubMed  Google Scholar 

  208. Fernyhough P, et al. Insulin and insulin-like growth factor-I enhance regeneration in cultured adult-rat sensory neurons. Brain Res. 1993;607(1–2):117–24.

    Article  CAS  PubMed  Google Scholar 

  209. Grote CW, et al. Deletion of the insulin receptor in sensory neurons increases pancreatic insulin levels. Exp Neurol. 2018;305:97–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Grote CW, Wright DE. A role for insulin in diabetic neuropathy. Front Neurosci. 2016;10:581.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig. 2018;9(6):1239–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kamiya H, et al. Unmyelinated fiber sensory neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev. 2005;21(5):448–58.

    Article  CAS  PubMed  Google Scholar 

  213. Pierson CR, et al. Insulin deficiency rather than hyperglycemia accounts for impaired neurotrophic responses and nerve fiber regeneration in type 1 diabetic neuropathy. J Neuropathol Exp Neurol. 2003;62(3):260–71.

    Article  CAS  PubMed  Google Scholar 

  214. Sima AAF. The heterogeneity of diabetic neuropathy. Front Biosci. 2008;13:4808–16.

    Google Scholar 

  215. Stino AM, et al. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J Peripher Nerv Syst. 2020;25(2):76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Grote CW, et al. Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathol Commun. 2013;1:15.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Grote CW, et al. The role of insulin receptor substrate 2 in neuronal insulin resistance in diabetic neuropathy. J Peripher Nerv Syst. 2011;16:S49.

    Google Scholar 

  218. Aghanoori MR, et al. Insulin prevents aberrant mitochondrial phenotype in sensory neurons of type 1 diabetic rats. Exp Neurol. 2017;297:148–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Chowdhury SKR, et al. Mitochondrial respiratory chain dysfunction in dorsal root ganglia of streptozotocin-induced diabetic rats and its correction by insulin treatment. Diabetes. 2010;59(4):1082–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Huang TJ, et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes. 2003;52(8):2129–36.

    Article  CAS  PubMed  Google Scholar 

  221. de la Hoz CL, et al. A model of chronic diabetic polyneuropathy: benefits from intranasal insulin are modified by sex and RAGE deletion. Am J Physiol Endocrinol Metab. 2017;312(5):E407–19.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Francis GJ, et al. Motor end plate innervation loss in diabetes and the role of insulin. J Neuropathol Exp Neurol. 2011;70(5):323–39.

    Article  CAS  PubMed  Google Scholar 

  223. Guo GF, et al. Local insulin and the rapid regrowth of diabetic epidermal axons. Neurobiol Dis. 2011;43(2):414–21.

    Article  CAS  PubMed  Google Scholar 

  224. Singhal A, et al. Near nerve local insulin prevents conduction slowing in experimental diabetes. Brain Res. 1997;763(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  225. Toth C, Brussee V, Zochodne DW. Remote neurotrophic support of epidermal nerve fibres in experimental diabetes. Diabetologia. 2006;49(5):1081–8.

    Article  CAS  PubMed  Google Scholar 

  226. Wahren J. C-peptide and the pathophysiology of microvascular complications of diabetes. J Intern Med. 2017;281(1):3–6.

    Article  CAS  PubMed  Google Scholar 

  227. Yosten GLC, Kolar GR. The physiology of proinsulin C-peptide: unanswered questions and a proposed model. Physiology. 2015;30(4):327–32.

    Article  CAS  PubMed  Google Scholar 

  228. Hills CE, Brunskill NJ. Cellular and physiological effects of C-peptide. Clin Sci. 2009;116(7–8):565–74.

    Article  CAS  Google Scholar 

  229. Yosten GLC, et al. Evidence for an interaction between proinsulin C-peptide and GPR146. J Endocrinol. 2013;218(2):B1–8.

    Article  CAS  PubMed  Google Scholar 

  230. Lindfors L, et al. Is GPR146 really the receptor for proinsulin C-peptide? Bioorg Med Chem Lett. 2020;30(13):127208.

    Article  PubMed  Google Scholar 

  231. Sima AAF, Kamiya H. Is C-peptide replacement the missing link for successful treatment of neurological complications in type 1 diabetes? Curr Drug Targets. 2008;9(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  232. Wahren J, Kallas A, Sima AAF. The clinical potential of C-peptide replacement in type 1 diabetes. Diabetes. 2012;61(4):761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Jolivalt CG, et al. Efficacy of a long-acting C-peptide analogue against peripheral neuropathy in streptozotocin-diabetic mice. Diabetes Obes Metab. 2015;17(8):781–8.

    Article  CAS  PubMed  Google Scholar 

  234. Ekberg K, et al. Amelioration of sensory nerve dysfunction by C-peptide in patients with type 1 diabetes. Diabetes. 2003;52(2):536–41.

    Article  CAS  PubMed  Google Scholar 

  235. Ekberg K, et al. C-peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007;30(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  236. Johansson BL, et al. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with Type 1 diabetes mellitus. Diabet Med. 2000;17(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  237. Wahren J, et al. Long-acting C-peptide and neuropathy in Type 1 diabetes: a 12-month clinical trial. Diabetes Care. 2016;39(4):596–602.

    Article  CAS  PubMed  Google Scholar 

  238. LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: ligands, binding proteins, and receptors. Mol Metab. 2021;52:101245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol. 2012;3:34.

    Article  Google Scholar 

  240. Gao WQ, et al. IGF-I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF-I treatment. J Neurobiol. 1999;39(1):142–52.

    Article  CAS  PubMed  Google Scholar 

  241. Rabinovsky ED. The multifunctional role of IGF-1 in peripheral nerve regeneration. Neurol Res. 2004;26(2):204–10.

    Article  CAS  PubMed  Google Scholar 

  242. Ekstrom AR, Kanje M, Skottner A. Nerve regeneration and serum levels of insulin-like growth factor-I in rats with streptozotocin-induced insulin deficiency. Brain Res. 1989;496(1–2):141–7.

    Article  CAS  PubMed  Google Scholar 

  243. Craner MJ, et al. Preferential expression of IGF-I in small DRG neurons and down-regulation following injury. Neuroreport. 2002;13(13):1649–52.

    Article  CAS  PubMed  Google Scholar 

  244. Kamiya H, et al. C-Peptide reverses nociceptive neuropathy in type 1 diabetes. Diabetes. 2006;55(12):3581–7.

    Article  CAS  PubMed  Google Scholar 

  245. Wuarin L, Guertin DM, Ishii DN. Early reduction in insulin-like growth factor gene expression in diabetic nerve. Exp Neurol. 1994;130(1):106–14.

    Article  CAS  PubMed  Google Scholar 

  246. Schmidt RE, et al. Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol. 2003;163(1):21–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zhuang HX, et al. Insulin-like growth factor (IGF) gene expression is reduced in neural tissues and liver from rats with non-insulin-dependent diabetes mellitus, and IGF treatment ameliorates diabetic neuropathy. J Pharmacol Exp Ther. 1997;283(1):366–74.

    CAS  PubMed  Google Scholar 

  248. Busiguina S, et al. Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiol Dis. 2000;7(6 Pt B):657–65.

    Article  CAS  PubMed  Google Scholar 

  249. Han HJ, Kang CW, Park SH. Tissue-specific regulation of insulin-like growth factors and insulin-like growth factor binding proteins in male diabetic rats in vivo and in vitro. Clin Exp Pharmacol Physiol. 2006;33(12):1172–9.

    Article  CAS  PubMed  Google Scholar 

  250. Hao W, et al. Hyperglycemia promotes Schwann cell de-differentiation and de-myelination via sorbitol accumulation and Igf1 protein down-regulation. J Biol Chem. 2015;290(28):17106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Ishii DN, Lupien SB. Insulin-like growth factors protect against diabetic neuropathy: effects on sensory nerve regeneration in rats. J Neurosci Res. 1995;40(1):138–44.

    Article  CAS  PubMed  Google Scholar 

  252. Lupien SB, Bluhm EJ, Ishii DN. Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J Neurosci Res. 2003;74(4):512–23.

    Article  CAS  PubMed  Google Scholar 

  253. Schmidt RE, et al. Insulin-like growth factor I reverses experimental diabetic autonomic neuropathy. Am J Pathol. 1999;155(5):1651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Schmidt RE, et al. Effect of IGF-I and neurotrophin-3 on gracile neuroaxonal dystrophy in diabetic and aging rats. Brain Res. 2000;876(1–2):88–94.

    Article  CAS  PubMed  Google Scholar 

  255. Zhuang HX, et al. Insulin-like growth factors reverse or arrest diabetic neuropathy: effects on hyperalgesia and impaired nerve regeneration in rats. Exp Neurol. 1996;140(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  256. Piriz J, Torres-Aleman I, Nunez A. Independent alterations in the central and peripheral somatosensory pathways in rat diabetic neuropathy. Neuroscience. 2009;160(2):402–11.

    Article  CAS  PubMed  Google Scholar 

  257. Wang H, et al. Protection of insulin-like growth factor 1 on experimental peripheral neuropathy in diabetic mice. Mol Med Rep. 2018;18(5):4577–86.

    CAS  PubMed  Google Scholar 

  258. Tang ZS, et al. Peripheral pain is enhanced by insulin-like growth factor 1 and its receptors in a mouse model of type 2 diabetes mellitus. J Diabetes. 2019;11(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  259. Li JB, et al. The preventive efficacy of methylcobalamin on rat peripheral neuropathy influenced by diabetes via neural IGF-1 levels. Nutr Neurosci. 2010;13(2):79–86.

    Article  CAS  Google Scholar 

  260. Song W, et al. Jinmaitong, a traditional Chinese compound prescription, ameliorates the streptozocin-induced diabetic peripheral neuropathy rats by increasing sciatic nerve IGF-1 and IGF-1R expression. Front Pharmacol. 2019;10:255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Wang R, et al. L-carnitine ameliorates peripheral neuropathy in diabetic mice with a corresponding increase in insulin-like growth factor-1 level. Mol Med Rep. 2019;19(1):743–51.

    CAS  PubMed  Google Scholar 

  262. Ekman B, Nystrom F, Arnqvist HJ. Circulating IGF-I concentrations are low and not correlated to glycaemic control in adults with type 1 diabetes. Eur J Endocrinol. 2000;143(4):505–10.

    Article  CAS  PubMed  Google Scholar 

  263. Tan K, Baxter RC. Serum insulin-like growth factor-I levels in adult diabetic-patients—the effect of age. J Clin Endocrinol Metab. 1986;63(3):651–5.

    Article  CAS  PubMed  Google Scholar 

  264. Migdalis IN, et al. Insulin-like growth-factor-I and Igf-I receptors in diabetic-patients with neuropathy. Diabet Med. 1995;12(9):823–7.

    Article  CAS  PubMed  Google Scholar 

  265. Crosby SR, et al. Elevated plasma insulin-like growth factor binding protein-1 levels in type 1 (insulin-dependent) diabetic patients with peripheral neuropathy. Diabetologia. 1992;35(9):868–72.

    Article  CAS  PubMed  Google Scholar 

  266. Simon CM, et al. Dysregulated IGFBP5 expression causes axon degeneration and motoneuron loss in diabetic neuropathy. Acta Neuropathol. 2015;130(3):373–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Rabinovsky ED, Draghia-Akli R. Insulin-like growth factor I plasmid therapy promotes in vivo angiogenesis. Mol Ther. 2004;9(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  268. Saboory E, et al. Exercise and insulin-like growth factor 1 supplementation improve angiogenesis and angiogenic cytokines in a rat model of diabetes-induced neuropathy. Exp Physiol. 2020;105(5):783–92.

    Article  CAS  PubMed  Google Scholar 

  269. Aghanoori MR, et al. Insulin-like growth factor-1 activates AMPK to augment mitochondrial function and correct neuronal metabolism in sensory neurons in type 1 diabetes. Mol Metab. 2019;20:149–65.

    Article  CAS  PubMed  Google Scholar 

  270. Aghanoori MR, et al. Sensory neurons derived from diabetic rats exhibit deficits in functional glycolysis and ATP that are ameliorated by IGF-1. Mol Metab. 2021;49:101191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Wilson BD, et al. Netrins promote developmental and therapeutic angiogenesis. Science. 2006;313(5787):640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Yam PT, Charron F. Signaling mechanisms of non-conventional axon guidance cues: the Shh, BMP and Wnt morphogens. Curr Opin Neurobiol. 2013;23(6):965–73.

    Article  CAS  PubMed  Google Scholar 

  273. Anjaneyulu M, et al. Transforming growth factor-beta induces cellular injury in experimental diabetic neuropathy. Exp Neurol. 2008;211(2):469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Shimizu F, et al. Advanced glycation end-products induce basement membrane hypertrophy in endoneurial microvessels and disrupt the blood-nerve barrier by stimulating the release of TGF-beta and vascular endothelial growth factor (VEGF) by pericytes. Diabetologia. 2011;54(6):1517–26.

    Article  CAS  PubMed  Google Scholar 

  275. Resham K, et al. Neuroprotective effects of isoquercitrin in diabetic neuropathy via Wnt/beta-catenin signaling pathway inhibition. Biofactors. 2020;46(3):411–20.

    Article  CAS  PubMed  Google Scholar 

  276. Resham K, Sharma SS. Pharmacologic inhibition of porcupine, disheveled, and beta-catenin in Wnt signaling pathway ameliorates diabetic peripheral neuropathy in rats. J Pain. 2019;20(11):1338–52.

    Article  CAS  PubMed  Google Scholar 

  277. Parmantier E, et al. Schwann cell-derived desert hedgehog controls the development of peripheral nerve sheaths. Neuron. 1999;23(4):713–24.

    Article  CAS  PubMed  Google Scholar 

  278. Moreau N, Boucher Y. Hedging against neuropathic pain: role of hedgehog signaling in pathological nerve healing. Int J Mol Sci. 2020;21(23):9115.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Chapouly C, et al. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes. Cardiovasc Res. 2016;109(2):217–27.

    Article  CAS  PubMed  Google Scholar 

  280. Calcutt NA, et al. Therapeutic efficacy of sonic hedgehog protein in experimental diabetic neuropathy. J Clin Investig. 2003;111(4):507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Stanton BZ, Peng LF. Small-molecule modulators of the Sonic Hedgehog signaling pathway. Mol Biosyst. 2010;6(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  282. Leavitt E, Lask G, Martin S. Sonic Hedgehog pathway inhibition in the treatment of advanced basal cell carcinoma. Curr Treat Options Oncol. 2019;20(11):84.

    Article  PubMed  Google Scholar 

  283. Li R, et al. Heparin-poloxamer thermosensitive hydrogel loaded with bFGF and NGF enhances peripheral nerve regeneration in diabetic rats. Biomaterials. 2018;168:24–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Nakae M, et al. Effects of bFGF on chronic neuropathy in STZ-diabetic rats. Diabetes. 2006;55:A188.

    Google Scholar 

  285. Foehring D, Brand-Saberi B, Theiss C. VEGF-induced growth cone enhancement is diminished by inhibiting tyrosine-residue 1214 of VEGFR-2. Cells Tissues Organs. 2012;196(3):195–205.

    Article  CAS  PubMed  Google Scholar 

  286. Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci. 2000;12(12):4243–54.

    Article  CAS  PubMed  Google Scholar 

  287. Bates DO, et al. Physiological role of vascular endothelial growth factors as homeostatic regulators. Compr Physiol. 2018;8(3):955–79.

    Article  PubMed  Google Scholar 

  288. Arredondo-Garcia VK, et al. association of the vascular endothelial growth factor gene polymorphism+936 c/t with diabetic neuropathy in patients with type 2 diabetes mellitus. Arch Med Res. 2019;50(4):181–6.

    Article  CAS  PubMed  Google Scholar 

  289. Tavakkoly-Bazzaz J, et al. VEGF gene polymorphism association with diabetic neuropathy. Mol Biol Rep. 2010;37(7):3625–30.

    Article  CAS  PubMed  Google Scholar 

  290. Zhang XH, et al. Relationship between single nucleotide polymorphisms in the 3′-untranslated region of the vascular endothelial growth factor gene and susceptibility to diabetic peripheral neuropathy in China. Arch Med Sci. 2014;10(5):1028–34.

    Article  CAS  PubMed  Google Scholar 

  291. Chavez JC, Almhanna K, Berti-Mattera LN. Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats. Neurosci Lett. 2005;374(3):179–82.

    Article  CAS  PubMed  Google Scholar 

  292. Mo FF, et al. Prostaglandin E1 protects the peripheral nerve in diabetics through preventing vascular permeability changes. Exp Clin Endocrinol Diabetes. 2018;126(2):113–22.

    Article  CAS  PubMed  Google Scholar 

  293. Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett. 1999;262(3):159–62.

    Article  CAS  PubMed  Google Scholar 

  294. Taiana MM, et al. Neutralization of Schwann cell-secreted VEGF is protective to in vitro and in vivo experimental diabetic neuropathy. PLoS One. 2014;9(9):e108403.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Chattopadhyay M, et al. HSV-mediated gene transfer of vascular endothelial growth factor to dorsal root ganglia prevents diabetic neuropathy. Gene Ther. 2005;12(18):1377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Murakami T, et al. VEGF 164 gene transfer by electroporation improves diabetic sensory neuropathy in mice. J Gene Med. 2006;8(6):773–81.

    Article  CAS  PubMed  Google Scholar 

  297. Schratzberger P, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Investig. 2001;107(9):1083–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Pawson EJ, et al. Engineered zinc finger protein-mediated VEGF-A activation restores deficient VEGF-A in sensory neurons in experimental diabetes. Diabetes. 2010;59(2):509–18.

    Article  CAS  PubMed  Google Scholar 

  299. Price SA, et al. Gene transfer of an engineered transcription factor promoting expression of VEGF-A protects against experimental diabetic neuropathy. Diabetes. 2006;55(6):1847–54.

    Article  CAS  PubMed  Google Scholar 

  300. Hulse RP, et al. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia. Neurobiol Dis. 2014;71:245–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Hulse RP, et al. Vascular endothelial growth factor-A(165)b prevents diabetic neuropathic pain and sensory neuronal degeneration. Clin Sci. 2015;129(8):741–56.

    Article  CAS  Google Scholar 

  302. Konishi Y, et al. Trophic effect of erythropoietin and other hematopoietic factors on central cholinergic neurons in vitro and in vivo. Brain Res. 1993;609(1–2):29–35.

    Article  CAS  PubMed  Google Scholar 

  303. Campana WM, Misasi R, O’Brien JS. Identification of a neurotrophic sequence in erythropoietin. Int J Mol Med. 1998;1(1):235–41.

    CAS  PubMed  Google Scholar 

  304. Keswani SC, Leitz GJ, Hoke A. Erythropoietin is neuroprotective in models of HIV sensory neuropathy. Neurosci Lett. 2004;371(2–3):102–5.

    Article  CAS  PubMed  Google Scholar 

  305. Collino M, et al. Flipping the molecular switch for innate protection and repair of tissues: long-lasting effects of a non-erythropoietic small peptide engineered from erythropoietin. Pharmacol Ther. 2015;151:32–40.

    Article  CAS  PubMed  Google Scholar 

  306. Rey F, et al. Erythropoietin as a neuroprotective molecule: an overview of its therapeutic potential in neurodegenerative diseases. ASN Neuro. 2019;11:1759091419871420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Campana WM, Myers RR. Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. FASEB J. 2001;15(8):1804–6.

    Article  CAS  PubMed  Google Scholar 

  308. Campana WM, Myers RR. Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci. 2003;18(6):1497–506.

    Article  PubMed  Google Scholar 

  309. Li XQ, Gonias SL, Campana WM. Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia. 2005;51(4):254–65.

    Article  PubMed  Google Scholar 

  310. Bianchi R, et al. Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci U S A. 2004;101(3):823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Demiot C, et al. Erythropoietin restores C-fiber function and prevents pressure ulcer formation in diabetic mice. J Invest Dermatol. 2011;131(11):2316–22.

    Article  CAS  PubMed  Google Scholar 

  312. Loesch A, et al. Sciatic nerve of diabetic rat treated with epoetin delta: effects on C-fibers and blood vessels including pericytes. Angiology. 2010;61(7):651–68.

    Article  CAS  PubMed  Google Scholar 

  313. Chattopadhyay M, et al. Neuroprotective effect of herpes simplex virus-mediated gene transfer of erythropoietin in hyperglycemic dorsal root ganglion neurons. Brain. 2009;132:879–88.

    Article  PubMed  PubMed Central  Google Scholar 

  314. Wu Z, Mata M, Fink DJ. Prolonged regulatable expression of EPO from an HSV vector using the LAP2 promoter element. Gene Ther. 2012;19(11):1107–13.

    Article  CAS  Google Scholar 

  315. Brines M, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A. 2008;105(31):10925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Leist M, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science. 2004;305(5681):239–42.

    Article  CAS  PubMed  Google Scholar 

  317. Bitto A, et al. Activation of the EPOR-beta common receptor complex by cibinetide ameliorates impaired wound healing in mice with genetic diabetes. BBA-Mol Basis Dis. 2018;1864(2):632–9.

    Article  CAS  Google Scholar 

  318. Schmidt RE, et al. Effect of insulin and an erythropoietin-derived peptide (ARA290) on established neuritic dystrophy and neuronopathy in Akita (Ins2(Akita)) diabetic mouse sympathetic ganglia. Exp Neurol. 2011;232(2):126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Schmidt RE, et al. Erythropoietin and its carbamylated derivative prevent the development of experimental diabetic autonomic neuropathy in STZ-induced diabetic NOD-SCID mice. Exp Neurol. 2008;209(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  320. Brines M, et al. ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol Med. 2014;20:658–66.

    Article  Google Scholar 

  321. Zhang WJ, Yu GL, Zhang MY. ARA 290 relieves pathophysiological pain by targeting TRPV1 channel: integration between immune system and nociception. Peptides. 2016;76:73–9.

    Article  CAS  PubMed  Google Scholar 

  322. Swartjes M, et al. ARA 290, a peptide derived from the tertiary structure of erythropoietin, produces long-term relief of neuropathic pain coupled with suppression of the spinal microglia response. Mol Pain. 2014;10:13.

    Article  PubMed  PubMed Central  Google Scholar 

  323. Mata M, Chattopadhyay M, Fink DJ. Gene therapy for the treatment of sensory neuropathy. Expert Opin Biol Ther. 2006;6(5):499–507.

    Article  CAS  PubMed  Google Scholar 

  324. Chattopadhyay M, et al. Prolonged preservation of nerve function in diabetic neuropathy in mice by herpes simplex virus-mediated gene transfer. Diabetologia. 2007;50(7):1550–8.

    Article  CAS  PubMed  Google Scholar 

  325. Pradat PF, et al. Continuous delivery of neurotrophin 3 by gene therapy has a neuroprotective effect in experimental models of diabetic and acrylamide neuropathies. Hum Gene Ther. 2001;12(18):2237–49.

    Article  CAS  PubMed  Google Scholar 

  326. Chu QM, et al. Systemic insulin-like growth factor-1 reverses hypoalgesia and improves mobility in a mouse model of diabetic peripheral neuropathy. Mol Ther. 2008;16(8):1400–8.

    Article  CAS  PubMed  Google Scholar 

  327. Homs J, et al. Intrathecal administration of IGF-I by AAVrh10 improves sensory and motor deficits in a mouse model of diabetic neuropathy. Mol Ther Methods Clin Dev. 2014;1:7.

    Article  PubMed  PubMed Central  Google Scholar 

  328. Ropper AH, et al. Vascular endothelial growth factor gene transfer for diabetic polyneuropathy: a randomized, double-blinded trial. Ann Neurol. 2009;65(4):386–93.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Eisenstein M. Sangamo’s lead zinc-finger therapy flops in diabetic neuropathy. Nat Biotechnol. 2012;30(2):121–3.

    Article  CAS  PubMed  Google Scholar 

  330. Glassman AR, et al. Five-year outcomes after initial aflibercept, bevacizumab, or ranibizumab treatment for diabetic macular edema (protocol T extension study). Ophthalmology. 2020;127(9):1201–10.

    Article  PubMed  Google Scholar 

  331. Striglia E, et al. Emerging drugs for the treatment of diabetic retinopathy. Expert Opin Emerg Drugs. 2020;25(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  332. Roy S, et al. Neurogenic tissue nanotransfection in the management of cutaneous diabetic polyneuropathy. Nanomedicine. 2020;28:102220.

    Article  CAS  PubMed  Google Scholar 

  333. Obrien JS, et al. Identification of prosaposin as a neurotrophic factor. Proc Natl Acad Sci U S A. 1994;91(20):9593–6.

    Article  CAS  PubMed  Google Scholar 

  334. Calcutt NA, et al. Prosaposin gene expression and the efficacy of a prosaposin-derived peptide in preventing structural and functional disorders of peripheral nerve in diabetic rats. J Neuropathol Exp Neurol. 1999;58(6):628–36.

    Article  CAS  PubMed  Google Scholar 

  335. Calcutt NA, Freshwater JD, O’Brien JS. Protection of sensory function and antihyperalgesic properties of a prosaposin-derived peptide in diabetic rats. Anesthesiology. 2000;93(5):1271–8.

    Article  CAS  PubMed  Google Scholar 

  336. Jolivalt CG, et al. Therapeutic efficacy of prosaposin-derived peptide on different models of allodynia. Pain. 2006;121(1–2):14–21.

    Article  CAS  PubMed  Google Scholar 

  337. Jolivalt CG, et al. Impaired prosaposin secretion during nerve regeneration in diabetic rats and protection of nerve regeneration by a prosaposin-derived peptide. J Neuropathol Exp Neurol. 2008;67(7):702–10.

    Article  CAS  PubMed  Google Scholar 

  338. King MR, et al. Glycogen synthase kinase-3 inhibition prevents learning deficits in diabetic mice. J Neurosci Res. 2013;91(4):506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Mizisin AP, et al. TX14(A), a prosaposin-derived peptide, reverses established nerve disorders in streptozotocin-diabetic rats and prevents them in galactose-fed rats. J Neuropathol Exp Neurol. 2001;60(10):953–60.

    Article  CAS  PubMed  Google Scholar 

  340. Evans SR, et al. A randomized trial evaluating prosaptide (TM) for HIV-associated sensory neuropathies: use of an electronic diary to record neuropathic pain. PLoS One. 2007;2(7):e551.

    Article  PubMed  PubMed Central  Google Scholar 

  341. Sung KJ, et al. Swedish nerve growth factor mutation (NGF(R100W)) defines a role for TrkA and p75(NTR) in nociception. J Neurosci. 2018;38(14):3394–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Sung KJ, Yang WL, Wu CB. Uncoupling neurotrophic function from nociception of nerve growth factor: what can be learned from a rare human disease? Neural Regen Res. 2019;14(4):570–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Yang WL, et al. Targeted mutation (R100W) of the gene encoding NGF leads to deficits in the peripheral sensory nervous system. Front Aging Neurosci. 2018;10:373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Yang WL, et al. A missense point mutation in nerve growth factor (NGF(R100W)) results in selective peripheral sensory neuropathy. Prog Neurobiol. 2020;194:101886.

    Article  CAS  PubMed  Google Scholar 

  345. Giuliani A, et al. Effects of topical application of CHF6467, a mutated form of human nerve growth factor, on skin wound healing in diabetic mice. J Pharmacol Exp Ther. 2020;375(2):317–31.

    Article  CAS  PubMed  Google Scholar 

  346. Hulse RP, et al. The control of alternative splicing by SRSF1 in myelinated afferents contributes to the development of neuropathic pain. Neurobiol Dis. 2016;96:186–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Oltean S, et al. SRPK1 inhibition in vivo: modulation of VEGF splicing and potential treatment for multiple diseases. Biochem Soc Trans. 2012;40:831–5.

    Article  CAS  PubMed  Google Scholar 

  348. Singh B, et al. Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene. Brain. 2014;137:1051–67.

    Article  PubMed  PubMed Central  Google Scholar 

  349. Fernyhough P, Calcutt N, Sabbir M. Muscarinic receptor antagonism rescues cholinergic-mediated cytoskeletal defects and enhances neurite outgrowth in sensory neurons. J Peripher Nerv Syst. 2018;23(4):397–8.

    Google Scholar 

  350. Sabbir MG, Fernyhough P. Muscarinic receptor antagonists activate ERK-CREB signaling to augment neurite outgrowth of adult sensory neurons. Neuropharmacology. 2018;143:268–81.

    Article  CAS  PubMed  Google Scholar 

  351. Saleh A, et al. Muscarinic toxin 7 signals via Ca2+/calmodulin-dependent protein kinase kinase beta to augment mitochondrial function and prevent neurodegeneration. Mol Neurobiol. 2020;57(6):2521–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  352. Calcutt NA, et al. Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J Clin Investig. 2017;127(2):608–22.

    Article  PubMed  PubMed Central  Google Scholar 

  353. Jolivalt CG, et al. Topical delivery of muscarinic receptor antagonists prevents and reverses peripheral neuropathy in female diabetic mice. J Pharmacol Exp Ther. 2020;374(1):44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Conese M, et al. Harnessing stem cells and neurotrophic factors with novel technologies in the treatment of Parkinson’s disease. Curr Stem Cell Res Ther. 2019;14(7):549–69.

    Article  CAS  PubMed  Google Scholar 

  355. Okawa T, et al. Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant. 2013;22(10):1767–83.

    Article  PubMed  Google Scholar 

  356. Shibata T, et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes. 2008;57(11):3099–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Xie J, et al. Therapeutic effects of stem cells from human exfoliated deciduous teeth on diabetic peripheral neuropathy. Diabetol Metab Syndr. 2019;11:38.

    Article  PubMed  PubMed Central  Google Scholar 

  358. Hasegawa T, et al. Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocin-induced diabetic rats. Exp Neurol. 2006;199(2):274–80.

    Article  CAS  PubMed  Google Scholar 

  359. Salgado AJ, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  360. Yan H, Ding YF, Lu MJ. Current status and prospects in the treatment of erectile dysfunction by adipose-derived stem cells in the diabetic animal model. Sex Med Rev. 2020;8(3):486–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel A. Calcutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calcutt, N.A. (2023). Neurotrophic Factors in the Pathogenesis and Treatment of Diabetic Neuropathy. In: Tesfaye, S., Gibbons, C.H., Malik, R.A., Veves, A. (eds) Diabetic Neuropathy. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-15613-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15613-7_8

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15612-0

  • Online ISBN: 978-3-031-15613-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics