Skip to main content

Mechanisms of Nerve Injury in Diabetes: Dyslipidemia, Bioenergetics, and Oxidative Damage

  • Chapter
  • First Online:
Diabetic Neuropathy

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Peripheral neuropathy (PN) is a common complication in patients with metabolic dysfunction, including obesity, prediabetes, and type 2 diabetes. Standard management consists of controlling hyperglycemia, which only modestly prevents PN development in obese and type 2 diabetes patients. Thus, PN still lacks effective disease-modifying treatments. The emergence of additional PN risk factors centered on the metabolic syndrome and its components, obesity and dyslipidemia, from multiple large diabetes clinical studies advocates a focus on lipid-centric pathomechanisms in addition to the traditional glucose-centric view of PN. This chapter will provide a brief overview of the clinical evidence that associates obesity and dyslipidemia with PN, followed by a generalized discussion of mitochondrial bioenergetics and dynamics as key and essential components of metabolism in the nerve. Next, preclinical and clinical studies that provide insight on the influence of bioenergetics failure, dyslipidemia specifically on lipogenesis, and impaired mitochondrial function and transport in the nerve will be covered. Emphasis will also be given to axo-glial metabolic communication and its role in preserving normal nerve bioenergetics, in light of the mounting interest of the noncell autonomous nature of PN. Finally, this chapter will conclude with the most promising therapeutic avenues for PN based on the lipid-centric view, particularly persons with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callaghan BC, et al. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012;6:CD007543.

    PubMed  Google Scholar 

  2. Callaghan BC, et al. Central obesity is associated with neuropathy in the severely obese. Mayo Clin Proc. 2020;95(7):1342–53.

    PubMed  Google Scholar 

  3. Callaghan BC, et al. Metabolic syndrome components are associated with symptomatic polyneuropathy independent of glycemic status. Diabetes Care. 2016;39(5):801–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Callaghan BC, et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 2016;73(12):1468–76.

    PubMed  PubMed Central  Google Scholar 

  5. Jaiswal M, et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes: SEARCH for Diabetes in Youth Study. Diabetes Care. 2017;40(9):1226–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jaiswal M, et al. Burden of diabetic peripheral neuropathy in pima indians with type 2 diabetes. Diabetes Care. 2016;39(4):e63–4.

    PubMed  PubMed Central  Google Scholar 

  7. Callaghan BC, et al. Triglycerides and amputation risk in patients with diabetes: ten-year follow-up in the DISTANCE study. Diabetes Care. 2011;34(3):635–40.

    PubMed  PubMed Central  Google Scholar 

  8. Smith AG, Singleton JR. Obesity and hyperlipidemia are risk factors for early diabetic neuropathy. J Diabetes Complicat. 2013;27(5):436–42.

    Google Scholar 

  9. Callaghan BC, et al. Diabetes and obesity are the main metabolic drivers of peripheral neuropathy. Ann Clin Transl Neurol. 2018;5(4):397–405.

    PubMed  PubMed Central  Google Scholar 

  10. Lu B, et al. Determination of peripheral neuropathy prevalence and associated factors in Chinese subjects with diabetes and pre-diabetes - ShangHai Diabetic neuRopathy Epidemiology and Molecular Genetics Study (SH-DREAMS). PLoS One. 2013;8(4):e61053.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Han L, et al. Peripheral neuropathy is associated with insulin resistance independent of metabolic syndrome. Diabetol Metab Syndr. 2015;7:14.

    PubMed Central  Google Scholar 

  12. Andersen ST, et al. Risk factors for incident diabetic polyneuropathy in a cohort with screen-detected type 2 diabetes followed for 13 years: ADDITION-Denmark. Diabetes Care. 2018;41(5):1068–75.

    CAS  PubMed  Google Scholar 

  13. Christensen DH, et al. Metabolic factors, lifestyle habits, and possible polyneuropathy in early type 2 diabetes: a nationwide study of 5,249 patients in the danish centre for strategic research in type 2 diabetes (DD2) cohort. Diabetes Care. 2020;43(6):1266–75.

    PubMed  Google Scholar 

  14. Schlesinger S, et al. General and abdominal obesity and incident distal sensorimotor polyneuropathy: insights into inflammatory biomarkers as potential mediators in the KORA F4/FF4 cohort. Diabetes Care. 2019;42(2):240–7.

    CAS  PubMed  Google Scholar 

  15. Ziegler D, et al. Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care. 2008;31(3):464–9.

    CAS  PubMed  Google Scholar 

  16. Hanewinckel R, et al. High body mass and kidney dysfunction relate to worse nerve function, even in adults without neuropathy. J Peripher Nerv Syst. 2017;22(2):112–20.

    PubMed  Google Scholar 

  17. Grisold A, Callaghan BC, Feldman EL. Mediators of diabetic neuropathy: is hyperglycemia the only culprit? Curr Opin Endocrinol Diabetes Obes. 2017;24(2):103–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stino AM, Smith AG. Peripheral neuropathy in prediabetes and the metabolic syndrome. J Diabetes Investig. 2017;8(5):646–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Duckworth W, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    CAS  PubMed  Google Scholar 

  20. Ismail-Beigi F, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010;376(9739):419–30.

    PubMed  PubMed Central  Google Scholar 

  21. Callaghan BC, et al. The prevalence and determinants of cognitive deficits and traditional diabetic complications in the severely obese. Diabetes Care. 2020;43(3):683–90.

    PubMed  PubMed Central  Google Scholar 

  22. O'Brien PD, Sakowski SA, Feldman EL. Mouse models of diabetic neuropathy. ILAR J. 2014;54(3):259–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Elzinga SE, et al. Sex differences in insulin resistance but not peripheral neuropathy in a diet-induced prediabetes mouse model. Dis Model Mech. 2021;14(4):48909.

    Google Scholar 

  24. Medrikova D, et al. Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int J Obes. 2012;36(2):262–72.

    CAS  Google Scholar 

  25. Farr OM, Gavrieli A, Mantzoros CS. Leptin applications in 2015: what have we learned about leptin and obesity? Curr Opin Endocrinol Diabetes Obes. 2015;22(5):353–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hinder LM, et al. Dietary reversal of neuropathy in a murine model of prediabetes and metabolic syndrome. Dis Model Mech. 2017;10(6):717–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Brien PD, et al. Juvenile murine models of prediabetes and type 2 diabetes develop neuropathy. Dis Model Mech. 2018;11(12):37374.

    Google Scholar 

  28. O'Brien PD, et al. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech. 2020;13(2):42101.

    Google Scholar 

  29. Sajic M, et al. High dietary fat consumption impairs axonal mitochondrial function in vivo. J Neurosci. 2021;41(19):4321–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pop-Busui R, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.

    CAS  PubMed  Google Scholar 

  31. Tuomilehto J, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–50.

    CAS  PubMed  Google Scholar 

  32. Aucott L, et al. Effects of lifestyle interventions and long-term weight loss on lipid outcomes - a systematic review. Obes Rev. 2011;12(5):e412–25.

    CAS  PubMed  Google Scholar 

  33. Tjønna AE, et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation. 2008;118(4):346–54.

    PubMed  PubMed Central  Google Scholar 

  34. Salas-Salvado J, et al. Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care. 2011;34(1):14–9.

    PubMed  Google Scholar 

  35. Sasaki Y. Metabolic aspects of neuronal degeneration: from a NAD+ point of view. Neurosci Res. 2019;139:9–20.

    CAS  PubMed  Google Scholar 

  36. Feldman EL, et al. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron. 2017;93(6):1296–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang JT, Medress ZA, Barres BA. Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol. 2012;196(1):7–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rossi MJ, Pekkurnaz G. Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr Opin Neurobiol. 2019;57:149–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu XH, et al. Quantitative imaging of energy expenditure in human brain. NeuroImage. 2012;60(4):2107–17.

    PubMed  Google Scholar 

  40. Mitchell RW, et al. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem. 2011;117(4):735–46.

    CAS  PubMed  Google Scholar 

  41. Poitelon Y, Kopec AM, Belin S. Myelin fat facts: an overview of lipids and fatty acid metabolism. Cell. 2020;9(4):812.

    CAS  Google Scholar 

  42. Simpson IA, et al. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295(2):E242–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bender T, Martinou JC. The mitochondrial pyruvate carrier in health and disease: to carry or not to carry? Biochim Biophys Acta. 2016;1863(10):2436–42.

    CAS  PubMed  Google Scholar 

  44. Krebs HA, Johnson WA. Metabolism of ketonic acids in animal tissues. Biochem J. 1937;31(4):645–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chaban Y, Boekema EJ, Dudkina NV. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. Biochim Biophys Acta. 2014;1837(4):418–26.

    CAS  PubMed  Google Scholar 

  46. Cecchini G. Function and structure of complex II of the respiratory chain. Annu Rev Biochem. 2003;72:77–109.

    CAS  PubMed  Google Scholar 

  47. Hirst J. Energy transduction by respiratory complex I–an evaluation of current knowledge. Biochem Soc Trans. 2005;33(Pt 3):525–9.

    CAS  PubMed  Google Scholar 

  48. Crofts AR. The cytochrome bc1 complex: function in the context of structure. Annu Rev Physiol. 2004;66:689–733.

    CAS  PubMed  Google Scholar 

  49. Tsukihara T, et al. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996;272(5265):1136–44.

    CAS  PubMed  Google Scholar 

  50. Boyer PD. The ATP synthase–a splendid molecular machine. Annu Rev Biochem. 1997;66:717–49.

    CAS  PubMed  Google Scholar 

  51. Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156(4):825–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sobieski C, Fitzpatrick MJ, Mennerick SJ. Differential presynaptic ATP supply for basal and high-demand transmission. J Neurosci. 2017;37(7):1888–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Grote CW, Ryals JM, Wright DE. In vivo peripheral nervous system insulin signaling. J Peripher Nerv Syst. 2013;18(3):209–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Grote CW, et al. Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathol Commun. 2013;1:15.

    PubMed  PubMed Central  Google Scholar 

  55. Grote CW, Wright DE. A role for insulin in diabetic neuropathy. Front Neurosci. 2016;10:581.

    PubMed  PubMed Central  Google Scholar 

  56. Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 2010;33(5):469–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kastaniotis AJ, et al. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(1):39–48.

    CAS  PubMed  Google Scholar 

  58. Kidd GJ, Ohno N, Trapp BD. Biology of Schwann cells. Handb Clin Neurol. 2013;115:55–79.

    PubMed  Google Scholar 

  59. Schulingkamp RJ, et al. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–72.

    CAS  PubMed  Google Scholar 

  60. Jha MK, Morrison BM. Lactate transporters mediate glia-neuron metabolic crosstalk in homeostasis and disease. Front Cell Neurosci. 2020;14:589582.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Magnani P, et al. Glucose transporters in rat peripheral nerve: paranodal expression of GLUT1 and GLUT3. Metabolism. 1996;45(12):1466–73.

    CAS  Google Scholar 

  62. Magnani P, et al. Regulation of glucose transport in cultured Schwann cells. J Peripher Nerv Syst. 1998;3(1):28–36.

    CAS  PubMed  Google Scholar 

  63. Jha MK, Morrison BM. Glia-neuron energy metabolism in health and diseases: New insights into the role of nervous system metabolic transporters. Exp Neurol. 2018;309:23–31.

    CAS  PubMed Central  Google Scholar 

  64. Brown AM, et al. Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol. 2012;72(3):406–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Véga C, et al. Uptake of locally applied deoxyglucose, glucose and lactate by axons and Schwann cells of rat vagus nerve. J Physiol. 2003;546(Pt 2):551–64.

    PubMed  Google Scholar 

  66. Bouçanova F, Chrast R. Metabolic interaction between schwann cells and axons under physiological and disease conditions. Front Cell Neurosci. 2020;14:148.

    PubMed Central  Google Scholar 

  67. Gonçalves NP, et al. Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol. 2017;13(3):135–47.

    PubMed Central  Google Scholar 

  68. Domenech-Estevez E, et al. Distribution of monocarboxylate transporters in the peripheral nervous system suggests putative roles in lactate shuttling and myelination. J Neurosci. 2015;35(10):4151–6.

    CAS  PubMed Central  Google Scholar 

  69. Babetto E, Wong KM, Beirowski B. A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci. 2020;23(10):1215–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Morrison BM, et al. Deficiency in monocarboxylate transporter 1 (MCT1) in mice delays regeneration of peripheral nerves following sciatic nerve crush. Exp Neurol. 2015;263:325–38.

    CAS  PubMed  Google Scholar 

  71. Bouçanova F, et al. Disrupted function of lactate transporter MCT1, but not MCT4, in Schwann cells affects the maintenance of motor end-plate innervation. Glia. 2021;69(1):124–36.

    PubMed  Google Scholar 

  72. Jha MK, et al. Reducing monocarboxylate transporter MCT1 worsens experimental diabetic peripheral neuropathy. Exp Neurol. 2020;333:113415.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jha MK, et al. Monocarboxylate transporter 1 in Schwann cells contributes to maintenance of sensory nerve myelination during aging. Glia. 2020;68(1):161–77.

    PubMed  Google Scholar 

  74. Rumora AE, et al. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes. Int Rev Neurobiol. 2019;145:127–76.

    CAS  PubMed  Google Scholar 

  75. Courchet J, et al. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell. 2013;153(7):1510–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Spillane M, et al. Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis. Cell Rep. 2013;5(6):1564–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sun T, et al. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 2013;4(3):413–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sheng Z-H. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol. 2017;27(6):403–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Amiri M, Hollenbeck PJ. Mitochondrial biogenesis in the axons of vertebrate peripheral neurons. Dev Neurobiol. 2008;68(11):1348–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schwarz TL. Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol. 2013;5(6):11304.

    Google Scholar 

  81. Lentz SI, et al. Mitochondrial DNA (mtDNA) biogenesis: visualization and duel incorporation of BrdU and EdU into newly synthesized mtDNA in vitro. J Histochem Cytochem. 2010;58(2):207–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yu SB, Pekkurnaz G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J Mol Biol. 2018;430(21):3922–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rumora AE, et al. Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res. 2019;60(1):58–70.

    CAS  PubMed  Google Scholar 

  84. Rumora AE, et al. Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. FASEB J. 2018;32(1):195–207.

    CAS  PubMed  Google Scholar 

  85. Hinder LM, et al. Long-chain acyl coenzyme A synthetase 1 overexpression in primary cultured Schwann cells prevents long chain fatty acid-induced oxidative stress and mitochondrial dysfunction. Antioxid Redox Signal. 2014;21(4):588–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Viader A, et al. Aberrant Schwann cell lipid metabolism linked to mitochondrial deficits leads to axon degeneration and neuropathy. Neuron. 2013;77(5):886–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Padilla A, et al. Hyperglycemia magnifies Schwann cell dysfunction and cell death triggered by PA-induced lipotoxicity. Brain Res. 2011;1370:64–79.

    CAS  PubMed  Google Scholar 

  88. Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000;80(1):315–60.

    CAS  PubMed  Google Scholar 

  89. Fernyhough P. Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep. 2015;15(11):89.

    PubMed  Google Scholar 

  90. Chowdhury SK, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis. 2013;51:56–65.

    CAS  PubMed  Google Scholar 

  91. Vincent AM, et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol. 2010;120(4):477–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Colvin LA. Chemotherapy-induced peripheral neuropathy: where are we now? Pain. 2019;160(Suppl 1):1–10.

    Google Scholar 

  93. Trecarichi A, Flatters SJL. Mitochondrial dysfunction in the pathogenesis of chemotherapy-induced peripheral neuropathy. Int Rev Neurobiol. 2019;145:83–126.

    CAS  PubMed  Google Scholar 

  94. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 2018;592(5):692–702.

    CAS  PubMed  Google Scholar 

  95. Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants. FASEB J. 2015;29(12):4766–71.

    CAS  PubMed  Google Scholar 

  96. Snezhkina AV, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Med Cell Longev. 2019;2019:6175804.

    Google Scholar 

  97. Akude E, et al. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes. 2011;60(1):288–97.

    CAS  PubMed  Google Scholar 

  98. Nishikawa T, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    CAS  PubMed  Google Scholar 

  99. Vincent AM, et al. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 2005;19(6):638–40.

    CAS  PubMed  Google Scholar 

  100. Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc B. 2005;360(1464):2335–45.

    CAS  Google Scholar 

  101. Gardner P, Fridovich I. Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem. 1992;267(13):8757–63.

    CAS  PubMed  Google Scholar 

  102. Vincent AM, et al. Sensory neurons and Schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid Redox Signal. 2009;11(3):425–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Delaney CL, et al. Insulin-like growth factor-I and over-expression of Bcl-xL prevent glucose-mediated apoptosis in Schwann cells. J Neuropathol Exp Neurol. 2001;60(2):147–60.

    CAS  PubMed  Google Scholar 

  104. Thurston JH, et al. Effects of acute, subacute, and chronic diabetes on carbohydrate and energy metabolism in rat sciatic nerve: relation to mechanisms of peripheral neuropathy. Diabetes. 1995;44(2):190–5.

    CAS  PubMed  Google Scholar 

  105. Kishi Y, et al. Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes. 1999;48(10):2045–51.

    CAS  PubMed  Google Scholar 

  106. Obrosova IG, et al. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly (ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes. 2005;54(1):234–42.

    CAS  PubMed  Google Scholar 

  107. Yagihashi S. Glucotoxic mechanisms and related therapeutic approaches. Int Rev Neurobiol. 2016;127:121–49.

    CAS  PubMed  Google Scholar 

  108. Dewanjee S, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol. 2018;833:472–523.

    CAS  PubMed  Google Scholar 

  109. Greene DA, Lattimer S. Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation. J Clin Invest. 1983;72(3):1058–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987;316(10):599–606.

    CAS  PubMed  Google Scholar 

  111. Greene DA, et al. Nerve Na+-K+-ATPase, conduction, and myo-inositol in the insulin-deficient BB rat. Am J Physiol Endocrinol Metab. 1984;247(4):E534–9.

    CAS  Google Scholar 

  112. Oates PJ. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets. 2008;9(1):14–36.

    CAS  PubMed  Google Scholar 

  113. Stevens MJ, et al. The linked roles of nitric oxide, aldose reductase and (Na+, K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest. 1994;94(2):853–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kern TS, Engerman RL. Immunohistochemical distribution of aldose reductase. Histochem J. 1982;14(3):507–15.

    CAS  PubMed  Google Scholar 

  115. Cameron N, Cotter M. Potential therapeutic approaches to the treatment or prevention of diabetic neuropathy: evidence from experimental studies. Diabet Med. 1993;10(7):593–605.

    CAS  PubMed  Google Scholar 

  116. Ho EC, et al. Aldose reductase–deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes. 2006;55(7):1946–53.

    CAS  PubMed  Google Scholar 

  117. Yagihashi S, et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor. Brain. 2001;124(12):2448–58.

    CAS  PubMed  Google Scholar 

  118. Tsai SC, Burnakis TG. Aldose reductase inhibitors: an update. Ann Pharmacother. 1993;27(6):751–4.

    CAS  PubMed  Google Scholar 

  119. Chalk C, Benstead TJ, Moore F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst Rev. 2007;4:CD004572.

    Google Scholar 

  120. Misur I, et al. Advanced glycation endproducts in peripheral nerve in type 2 diabetes with neuropathy. Acta Diabetol. 2004;41(4):158–66.

    CAS  PubMed  Google Scholar 

  121. Popova EA, Mironova RS, Odjakova MK. Non-enzymatic glycosylation and deglycating enzymes. Biotechnol Biotechnol Equip. 2010;24(3):1928–35.

    CAS  Google Scholar 

  122. Lukic IK, et al. The RAGE pathway: activation and perpetuation in the pathogenesis of diabetic neuropathy. Ann N Y Acad Sci. 2008;1126(1):76–80.

    CAS  PubMed  Google Scholar 

  123. Du X-L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000;97(22):12222–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Eichberg J. Protein kinase C changes in diabetes: is the concept relevant to neuropathy? Int Rev Neurobiol. 2002;50:61–82.

    CAS  PubMed  Google Scholar 

  125. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bansal D, et al. Ruboxistaurin for the treatment of diabetic peripheral neuropathy: a systematic review of randomized clinical trials. Diabetes Metab J. 2013;37(5):375.

    PubMed  PubMed Central  Google Scholar 

  127. Callaghan BC, Hur J, Feldman EL. Diabetic neuropathy: one disease or two? Curr Opin Neurol. 2012;25(5):536–41.

    PubMed  PubMed Central  Google Scholar 

  128. Vincent AM, et al. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst. 2009;14(4):257–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wiggin TD, et al. Elevated triglycerides correlate with progression of diabetic neuropathy. Diabetes. 2009;58(7):1634–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Eid S, et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia. 2019;62(9):1539–49.

    PubMed  PubMed Central  Google Scholar 

  131. Savelieff MG, Callaghan BC, Feldman EL. The emerging role of dyslipidemia in diabetic microvascular complications. Curr Opin Endocrinol Diabetes Obes. 2020;27(2):115–23.

    CAS  PubMed  Google Scholar 

  132. Franssen R, et al. Obesity and dyslipidemia. Med Clin North Am. 2011;95(5):893–902.

    CAS  PubMed  Google Scholar 

  133. Corbin KD, et al. Obesity in type 1 diabetes: pathophysiology, clinical impact, and mechanisms. Endocr Rev. 2018;39(5):629–63.

    PubMed  Google Scholar 

  134. Mottalib A, et al. Weight management in patients with type 1 diabetes and obesity. Curr Diab Rep. 2017;17(10):92.

    PubMed  PubMed Central  Google Scholar 

  135. O'Brien PD, et al. Neurological consequences of obesity. Lancet Neurol. 2017;16(6):465–77.

    PubMed  PubMed Central  Google Scholar 

  136. Ebbert JO, Jensen MD. Fat depots, free fatty acids, and dyslipidemia. Nutrients. 2013;5(2):498–508.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Tchoukalova YD, et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci U S A. 2010;107(42):18226–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Acosta JR, et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in non-obese individuals with type 2 diabetes. Diabetologia. 2016;59(3):560–70.

    CAS  PubMed  Google Scholar 

  139. Wensveen FM, et al. The “Big Bang” in obese fat: events initiating obesity-induced adipose tissue inflammation. Eur J Immunol. 2015;45(9):2446–56.

    CAS  PubMed  Google Scholar 

  140. Fontana L, et al. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56(4):1010–3.

    CAS  PubMed  Google Scholar 

  141. Vincent AM, et al. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes. 2009;58(10):2376–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ouchi N, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bartness TJ, et al. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol. 2010;318(1-2):34–43.

    CAS  PubMed  Google Scholar 

  144. Unamuno X, et al. Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Investig. 2018;48(9):e12997.

    Google Scholar 

  145. Schweiger M, et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem. 2006;281(52):40236–41.

    CAS  PubMed  Google Scholar 

  146. Chen SC, Tseng CH. Dyslipidemia, kidney disease, and cardiovascular disease in diabetic patients. Rev Diabet Stud. 2013;10(2-3):88–100.

    PubMed  PubMed Central  Google Scholar 

  147. Bardini G, Rotella CM, Giannini S. Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro- and macrovascular complications. Rev Diabet Stud. 2012;9(2-3):82–93.

    PubMed  PubMed Central  Google Scholar 

  148. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.

    CAS  PubMed  Google Scholar 

  149. Czech MP, et al. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia. 2013;56(5):949–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Rhee EP, et al. Lipid profiling identifies a triacylglycerol signature of insulin resistance and improves diabetes prediction in humans. J Clin Invest. 2011;121(4):1402–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Basu Ball W, Neff JK, Gohil VM. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 2018;592(8):1273–90.

    CAS  PubMed  Google Scholar 

  152. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;26(9):1015–35.

    CAS  PubMed  Google Scholar 

  153. Djemli-Shipkolye A, et al. Na, K-atpase alterations in diabetic rats: relationship with lipid metabolism and nerve physiological parameters. Cell Mol Biol. 2001;47(2):297–304.

    CAS  PubMed  Google Scholar 

  154. Montani L, et al. De novo fatty acid synthesis by Schwann cells is essential for peripheral nervous system myelination. J Cell Biol. 2018;217(4):1353–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Liang G, Cline GW, Macica CM. IGF-1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination. Glia. 2007;55(6):632–41.

    PubMed  Google Scholar 

  156. Camargo N, Smit AB, Verheijen MH. SREBPs: SREBP function in glia-neuron interactions. FEBS J. 2009;276(3):628–36.

    CAS  PubMed  Google Scholar 

  157. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol. 2017;13(12):710–30.

    CAS  PubMed  Google Scholar 

  158. Wang B, Tontonoz P. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 2018;14(8):452–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Ewan EE, et al. Ascending dorsal column sensory neurons respond to spinal cord injury and downregulate genes related to lipid metabolism. Sci Rep. 2021;11(1):374.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. de Preux AS, et al. SREBP-1c expression in Schwann cells is affected by diabetes and nutritional status. Mol Cell Neurosci. 2007;35(4):525–34.

    PubMed  Google Scholar 

  161. Zhu L, et al. Prolonged high-glucose exposure decreased SREBP-1/FASN/ACC in Schwann cells of diabetic mice via blocking PI3K/Akt pathway. J Cell Biochem. 2019;120(4):5777–89.

    CAS  PubMed  Google Scholar 

  162. Tachibana H, et al. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J Am Soc Nephrol. 2012;23(11):1835–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Hazra S, et al. Liver X receptor modulates diabetic retinopathy outcome in a mouse model of streptozotocin-induced diabetes. Diabetes. 2012;61(12):3270–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Gavini CK, et al. Liver X receptors protect dorsal root ganglia from obesity-induced endoplasmic reticulum stress and mechanical allodynia. Cell Rep. 2018;25(2):271–277 e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. McGregor BA, et al. Conserved transcriptional signatures in human and murine diabetic peripheral neuropathy. Sci Rep. 2018;8(1):17678.

    PubMed  PubMed Central  Google Scholar 

  166. Eid SA, et al. Targeting the NADPH oxidase-4 and liver X receptor pathway preserves schwann cell integrity in diabetic mice. Diabetes. 2020;69(3):448–64.

    CAS  PubMed  Google Scholar 

  167. Rumora AE, et al. The divergent roles of dietary saturated and monounsaturated fatty acids on nerve function in murine models of obesity. J Neurosci. 2019;39(19):3770–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab. 2009;297(2):E271–88.

    CAS  PubMed  Google Scholar 

  169. Verheijen MH, et al. Local regulation of fat metabolism in peripheral nerves. Genes Dev. 2003;17(19):2450–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Pande M, et al. Transcriptional profiling of diabetic neuropathy in the BKS db/db mouse: a model of type 2 diabetes. Diabetes. 2011;60(7):1981–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hur J, et al. The identification of gene expression profiles associated with progression of human diabetic neuropathy. Brain. 2011;134(Pt 11):3222–35.

    PubMed  PubMed Central  Google Scholar 

  172. Supruniuk E, Miklosz A, Chabowski A. The implication of PGC-1alpha on fatty acid transport across plasma and mitochondrial membranes in the insulin sensitive tissues. Front Physiol. 2017;8:923.

    PubMed  PubMed Central  Google Scholar 

  173. DeFronzo R. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53(7):1270–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. D'Souza K, Nzirorera C, Kienesberger PC. Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta. 2016;1861(10):1513–24.

    CAS  PubMed  Google Scholar 

  175. Sas KM, et al. Shared and distinct lipid-lipid interactions in plasma and affected tissues in a diabetic mouse model. J Lipid Res. 2018;59(2):173–83.

    CAS  PubMed  Google Scholar 

  176. Szendroedi J, et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A. 2014;111(26):9597–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Chaurasia B, Summers SA. Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol Metab. 2015;26(10):538–50.

    CAS  PubMed  Google Scholar 

  178. Hu W, et al. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem. 2011;286(19):16596–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Fridman V, et al. Randomized trial of l-serine in patients with hereditary sensory and autonomic neuropathy type 1. Neurology. 2019;92(4):e359–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Fridman V, et al. Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. J Diabetes Complicat. 2021;35(4):107852.

    CAS  Google Scholar 

  181. Rumora AE, et al. Plasma lipid metabolites associate with diabetic polyneuropathy in a cohort with type 2 diabetes. Ann Clin Transl Neurol. 2021. https://doi.org/10.1002/acn3.51367.

  182. Afshinnia F, et al. Increased lipogenesis and impaired beta-oxidation predict type 2 diabetic kidney disease progression in American Indians. JCI Insight. 2019;4(21):e130317.

    PubMed  PubMed Central  Google Scholar 

  183. Stith JL, Velazquez FN, Obeid LM. Advances in determining signaling mechanisms of ceramide and role in disease. J Lipid Res. 2019;60(5):913–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Raichur S, et al. The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab. 2019;21:36–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Barber CN, Raben DM. Lipid metabolism crosstalk in the brain: Glia and neurons. Front Cell Neurosci. 2019;13:212.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Zlobine I, Gopal K, Ussher JR. Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta. 2016;1861(10):1555–68.

    CAS  PubMed  Google Scholar 

  187. McCoin CS, Knotts TA, Adams SH. Acylcarnitines—old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol. 2015;11(10):617.

    PubMed  PubMed Central  Google Scholar 

  188. Hinder LM, et al. Comparative RNA-Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease. J Cell Mol Med. 2017;21(9):2140–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Guo K, et al. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics. 2020;12(1):123.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Elzinga S, et al. Toll-like receptors and inflammation in metabolic neuropathy; a role in early versus late disease? Exp Neurol. 2019;320:112967.

    CAS  PubMed  Google Scholar 

  191. Rocha DM, et al. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis. 2016;244:211–5.

    CAS  PubMed  Google Scholar 

  192. Lee JY, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem. 2004;279(17):16971–9.

    CAS  PubMed  Google Scholar 

  193. Hwang DH, Kim JA, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol. 2016;785:24–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Stino AM, et al. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J Peripher Nerv Syst. 2020;25(2):76–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Yokoi H, Yanagita M. Targeting the fatty acid transport protein CD36, a class B scavenger receptor, in the treatment of renal disease. Kidney Int. 2016;89(4):740–2.

    CAS  PubMed  Google Scholar 

  196. Fu D, et al. Immune complex formation in human diabetic retina enhances toxicity of oxidized LDL towards retinal capillary pericytes. J Lipid Res. 2014;55(5):860–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Nowicki M, et al. Oxidized low-density lipoprotein (oxLDL)-induced cell death in dorsal root ganglion cell cultures depends not on the lectin-like oxLDL receptor-1 but on the toll-like receptor-4. J Neurosci Res. 2010;88(2):403–12.

    CAS  PubMed  Google Scholar 

  198. Hinder LM, et al. Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Sci Rep. 2019;9(1):881.

    PubMed  PubMed Central  Google Scholar 

  199. Eid SA, et al. Differential effects of empagliflozin on microvascular complications in murine models of type 1 and type 2 diabetes. Biology. 2020;9(11):347.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Hinder LM, et al. Transcriptional networks of progressive diabetic peripheral neuropathy in the db/db mouse model of type 2 diabetes: an inflammatory story. Exp Neurol. 2018;305:33–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Eid SA, et al. Gene expression profiles of diabetic kidney disease and neuropathy in eNOS knockout mice: predictors of pathology and RAS blockade effects. FASEB J. 2021;35(5):e21467.

    CAS  PubMed  Google Scholar 

  202. Sas KM, et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight. 2016;1(15):e86976.

    PubMed  PubMed Central  Google Scholar 

  203. Coppey L, et al. Effect of dietary oils on peripheral neuropathy-related endpoints in dietary obese rats. Diabetes Metab Syndr Obes. 2018;11:117–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Coppey L, et al. Progressive loss of corneal nerve fibers and sensitivity in rats modeling obesity and type 2 diabetes is reversible with omega-3 fatty acid intervention: supporting cornea analyses as a marker for peripheral neuropathy and treatment. Diabetes Metab Syndr Obes. 2020;13:1367–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Cinci L, et al. Oxidative, metabolic, and apoptotic responses of Schwann cells to high glucose levels. J Biochem Mol Toxicol. 2015;29(6):274–9.

    CAS  PubMed  Google Scholar 

  206. Kato A, et al. Recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in immortalized adult mouse Schwann (IMS32) cells. Neurosci Res. 2019;147:26–32.

    CAS  PubMed  Google Scholar 

  207. Liu YP, Shao SJ, Guo HD. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sci. 2020;248:117459.

    CAS  PubMed  Google Scholar 

  208. Zhang L, et al. Hyperglycemia alters the Schwann cell mitochondrial proteome and decreases coupled respiration in the absence of superoxide production. J Proteome Res. 2010;9(1):458–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Russell JW, et al. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis. 1999;6(5):347–63.

    CAS  PubMed  Google Scholar 

  210. Zilliox LA, Russell JW. Physical activity and dietary interventions in diabetic neuropathy: a systematic review. Clin Auton Res. 2019;29(4):443–55.

    PubMed  PubMed Central  Google Scholar 

  211. Balducci S, et al. Exercise training can modify the natural history of diabetic peripheral neuropathy. J Diabetes Complicat. 2006;20(4):216–23.

    Google Scholar 

  212. Kluding PM, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complicat. 2012;26(5):424–9.

    Google Scholar 

  213. Singleton JR, et al. Supervised exercise improves cutaneous reinnervation capacity in metabolic syndrome patients. Ann Neurol. 2015;77(1):146–53.

    PubMed  Google Scholar 

  214. Smith AG, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29(6):1294–9.

    Google Scholar 

  215. Cooper MA, et al. A ketogenic diet reduces metabolic syndrome-induced allodynia and promotes peripheral nerve growth in mice. Exp Neurol. 2018;306:149–57.

    PubMed  PubMed Central  Google Scholar 

  216. Estruch R, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med. 2018;378(25):e34.

    CAS  PubMed  Google Scholar 

  217. Guasch-Ferré M, et al. Total and subtypes of dietary fat intake and risk of type 2 diabetes mellitus in the Prevención con Dieta Mediterránea (PREDIMED) study. Am J Clin Nutr. 2017;105(3):723–35.

    PubMed  Google Scholar 

  218. Qian F, et al. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2016;39(8):1448–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Lewis EJH, et al. Effect of omega-3 supplementation on neuropathy in type 1 diabetes: a 12-month pilot trial. Neurology. 2017;88(24):2294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Wanders AJ, et al. Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk: The NEO study. Eur J Clin Nutr. 2017;71(2):245–51.

    CAS  PubMed  Google Scholar 

  221. Bunner AE, et al. A dietary intervention for chronic diabetic neuropathy pain: a randomized controlled pilot study. Nutr Diabetes. 2015;5:e158.

    CAS  PubMed  PubMed Central  Google Scholar 

  222. The Look AHEAD Research Group. Effects of a long-term lifestyle modification programme on peripheral neuropathy in overweight or obese adults with type 2 diabetes: the Look AHEAD study. Diabetologia. 2017;60(6):980–8.

    PubMed Central  Google Scholar 

  223. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3(11):866–75.

    PubMed Central  Google Scholar 

  224. Müller-Stich BP, et al. Gastric bypass leads to improvement of diabetic neuropathy independent of glucose normalization–results of a prospective cohort study (DiaSurg 1 study). Ann Surg. 2013;258(5):760–5; discussion 765–6

    PubMed  Google Scholar 

  225. Davis TM, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. 2011;54(2):280–90.

    CAS  PubMed  Google Scholar 

  226. Keech AC, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97.

    CAS  PubMed  Google Scholar 

  227. Rajamani K, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet. 2009;373(9677):1780–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Cho YR, et al. Therapeutic effects of fenofibrate on diabetic peripheral neuropathy by improving endothelial and neural survival in db/db mice. PLoS One. 2014;9(1):e83204.

    PubMed  PubMed Central  Google Scholar 

  229. Kang EY, et al. Association of statin therapy with prevention of vision-threatening diabetic retinopathy. JAMA Ophthalmol. 2019;137(4):363–71.

    PubMed  PubMed Central  Google Scholar 

  230. de Langen JJ, van Puijenbroek EP. HMG-CoA-reductase inhibitors and neuropathy: reports to the Netherlands Pharmacovigilance Centre. Neth J Med. 2006;64(9):334–8.

    PubMed  Google Scholar 

  231. Tierney EF, et al. Association of statin use with peripheral neuropathy in the U.S. population 40 years of age or older. J Diabetes. 2013;5(2):207–15.

    CAS  PubMed  Google Scholar 

  232. Pergolizzi JV, et al. Statins and neuropathic pain: a narrative review. Pain Ther. 2020;9(1):97–111.

    PubMed  PubMed Central  Google Scholar 

  233. Kristensen FP, et al. Statin therapy and risk of polyneuropathy in type 2 diabetes: a Danish Cohort Study. Diabetes Care. 2020;43(12):2945–52.

    PubMed  Google Scholar 

  234. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 2017;120(1):229–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Tsimihodimos V, Liberopoulos E, Elisaf M. Pleiotropic effects of fenofibrate. Curr Pharm Des. 2009;15(5):517–28.

    CAS  PubMed  Google Scholar 

  236. de Anda-Jauregui G, et al. Pathway crosstalk perturbation network modeling for identification of connectivity changes induced by diabetic neuropathy and pioglitazone. BMC Syst Biol. 2019;13(1):1.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Bhumsoo Kim, PhD, for revising content and for critical input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva L. Feldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eid, S.A., Noureldein, M., Savelieff, M.G., Feldman, E.L. (2023). Mechanisms of Nerve Injury in Diabetes: Dyslipidemia, Bioenergetics, and Oxidative Damage. In: Tesfaye, S., Gibbons, C.H., Malik, R.A., Veves, A. (eds) Diabetic Neuropathy. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-031-15613-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15613-7_16

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15612-0

  • Online ISBN: 978-3-031-15613-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics