Skip to main content

The Utilization of Speed Breeding and Genome Editing to Achieve Zero Hunger

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of the OMICs Revolution

Abstract

Global population is estimated to increase by 25% and reach 10 billion over the next 30 years. Conventional breeding methods have thus far produced crops with enhanced nutritional status and high yields to meet the food requirements of the growing population. But the current pace of yield increase for major crops, including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), is insufficient to meet future demand. A major limitation for plant breeding and crop improvement, the time-consuming crop production approaches, which in general allow only one or two generations per year, have been advanced by “speed breeding” (SB) by reducing the breeding cycle and accelerating crop research through speedy generation advancement. Genome editing has been exploited with the promise of developing new crops in less time with a very low possibility of off-target effects and can be achieved in any laboratory with any crop, even those with complex genomes. However, gene editing still entails time-consuming tissue culture, in addition to specialized labs with a level of physical containment appropriate for undertaking genetic manipulation using CRISPR reagents. Systems that integrate gene editing directly with a SB platform, for instance, ExpressEDIT could avoid the barriers of in vitro manipulation of plant materials. Though not yet routine, several steps are operational on the way to fast-tracking genome editing to breed better crop varieties which are highlighted in the present chapter. Integrating state-of-the-art technologies such as genome editing with SB could enable plant breeders to meet the food security challenges of feeding a growing population of 10 billion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achigan-Dako, E. G., Sogbohossou, O. E., & Maundu, P. (2014). Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica, 197, 303–317.

    Article  CAS  Google Scholar 

  • Action Against Hunger International Nutrition Security Policy, p. 8.

    Google Scholar 

  • Agapito-Tenfen, S. Z. (2016). Biosafety aspects of genome-editing techniques. Biosafety briefing, ACB and TWN.

    Google Scholar 

  • Ali, Z., Shami, A., Sedeek, K., Kamel, R., Alhabsi, A., Tehseen, M., Hassan, N., Butt, H., Kababji, A., Hamdan, S. M., & Mahfouz, M. M. (2020). Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Communications Biology, 3, 44.

    Article  CAS  Google Scholar 

  • Brookes, G., & Barfoot, P. (2018). Environmental impacts of genetically modified (GM) crop use 1996–2016: Impacts on pesticide use and carbon emissions. GM Crops & Food, 9(3), 109–139.

    Article  Google Scholar 

  • Chiurugwi, T., Kemp, S., Powell, W., Hickey, L. T., & Powell, W. (2018). Speed breeding orphan crops. Theoretical and Applied Genetics.

    Google Scholar 

  • Collard, B. C. Y., Beredo, J. C., Lenaerts, B., Mendoza, R., Santelices, R., Lopena, V., Verdeprado, H., Raghavan, C., Gregorio, G. B., Vial, L., et al. (2017). Revisiting rice breeding methods–evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Production Science, 20, 337–352.

    Article  Google Scholar 

  • FAO. (2016). International symposium on the role of biotechnologies in sustainable food systems and nutrition. www.fao.org/about/meetings/agribiotechssymposium/faqs/en

  • Hartley, S., Gillund, F., van Hove, L., & Wickson, F. (2016). Essential features of responsible governance of agricultural biotechnology. PLoS Biology, 14(5), e1002453.

    Article  Google Scholar 

  • Johnston, H. R., Keats, B. J. B., & Sherman, S. L. (2019). Population genetics. In R. E. Pyeritz, B. R. Korf, & W. W. Grody (Eds.), Emery and Rimoin’s principles and practice of medical genetics and genomics. Foundations (pp. 359–373). Academic. https://doi.org/10.1016/B978-0-12-812537-3.00012-3

    Chapter  Google Scholar 

  • Kangmennaang, J., Osei, L., Armah, F. A., & Luginaah, I. (2016). Genetically modified organisms and the age of (un) reason? A critical examination of the rhetoric in the GMO public policy debates in Ghana. Futures, 83, 37–49.

    Article  Google Scholar 

  • Lacchini, E., Kiegle, E., Castellani, M., Adam, H., Jouannic, S., Gregis, V., & Kater, M. M. (2020). CRISPR-mediated accelerated domestication of African rice landraces. PLoS One, 15(3), e0229782.

    Article  CAS  Google Scholar 

  • Lu, Y., & Zhu, J.-K. (2017). Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Molecular Plant, 10(3), 523–525.

    Article  CAS  Google Scholar 

  • Morris, M. L., & Bellon, M. R. (2004). Participatory plant breeding research: Opportunities and challenges for the international crop improvement system. Euphytica, 136(1), 21–35. https://doi.org/10.1023/B:EUPH.0000019509.37769.b1

    Article  Google Scholar 

  • Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J. D. G., & Kamoun, S. (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, 691.

    Article  CAS  Google Scholar 

  • Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J. C., Perez-Quintero, A., Li, T., Eom, J.-S., Li, C., Nguyen, H., Liu, B., Auguy, F., Sciallano, C., Luu, V. T., Dossa, G. S., Cunnac, S., Schmidt, S. M., Slamet-Loedin, I. H., Vera Cruz, C., Szurek, B., Frommer, W. B., White, F. F., & Yang, B. (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 37(11), 1344–1350.

    Article  CAS  Google Scholar 

  • SAM. (2017). New techniques in agricultural biotechnology. E.C.H.L.G.o.t.S.A. Mechanism. Publications Office of the European Union.

    Google Scholar 

  • Shi, J., Gao, H., Wang, H., Lafitte, H. R., Archibald, R. L., Yang, M., Hakimi, S. M., Mo, H., & Habben, J. E. (2017). ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 15(2), 207–216.

    Article  CAS  Google Scholar 

  • Shimelis, H., Gwata, E. T., & Laing, M. D. (2019). Crop improvement for agricultural transformation in Southern Africa. In R. A. Sikora, E. R. Terry, P. L. G. Vlek, & J. Chitja (Eds.), Transforming agriculture in Southern Africa (1st ed., pp. 97–103). Routledge. https://doi.org/10.4324/9780429401701

    Chapter  Google Scholar 

  • Singer, M. F. (1979). Introduction and historical background. In J. K. Setlow & A. Hollaender (Eds.), Genetic engineering (Vol. 1, pp. 1–13). Plenum.

    Google Scholar 

  • Slama-Ayed, O., Bouhaouel, I., Ayed, S., De Buyser, J., Picard, E., & Amara, H. S. (2019). Efficiency of three haplo-methods in durum wheat (Triticum turgidum subsp. durum Desf.): Isolated microspore culture, gynogenesis and wheat× maize crosses. Czech Journal of Genetics and Plant Breeding, 55, 101–109.

    Article  CAS  Google Scholar 

  • Sustainable Development Goal 2, Zero Hunger. https://sustainabledevelopment.un.org/sdg2

  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J.-L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32(9), 947–951.

    Article  CAS  Google Scholar 

  • Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.-G., & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 11(4), e0154027.

    Article  Google Scholar 

  • Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., Hatta, A. M., Hinchliffe, A., Steed, A., Reynolds, D., & Hickey, L. T. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4, 23–29.

    Article  Google Scholar 

  • Wieczorek, A. M., & Wright, M. G. (2012). History of agricultural biotechnology: How crop development has evolved. Nature Education Knowledge, 3(10), 9.

    Google Scholar 

  • Xie, K., Zhang, J., & Yang, Y. (2014). Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Molecular Plant, 7(5), 923–926.

    Article  CAS  Google Scholar 

  • Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W. (2020). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR−Cas9 system. Frontiers in Plant Science, 10, 1663.

    Article  Google Scholar 

  • Zhang, Z., Mao, Y., Ha, S., Liu, W., Botella, J. R., & Zhu, J. K. (2016). A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Reports, 35, 1519–1533.

    Article  CAS  Google Scholar 

  • Zhang, Q., Xing, H.-L., Wang, Z.-P., Zhang, H.-Y., Yang, F., Wang, X.-C., & Chen, Q.-J. (2018). Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Molecular Biology, 96(4–5), 445–456.

    Article  CAS  Google Scholar 

  • Zhao, H., & Wolt, J. D. (2017). Risk associated with off-target plant genome editing and methods for its limitation. Emerging Topics in Life Sciences, 1(2), 231–240.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, K., Mahrukh, Nisa, R.T., Zaid, A., Mushtaq, M. (2023). The Utilization of Speed Breeding and Genome Editing to Achieve Zero Hunger. In: Prakash, C.S., Fiaz, S., Nadeem, M.A., Baloch, F.S., Qayyum, A. (eds) Sustainable Agriculture in the Era of the OMICs Revolution. Springer, Cham. https://doi.org/10.1007/978-3-031-15568-0_1

Download citation

Publish with us

Policies and ethics