Skip to main content

Nanotechnology: A Novel Tool for Aquaculture Feed Development

  • Chapter
  • First Online:
Nanotechnological Approaches to the Advancement of Innovations in Aquaculture

Abstract

Aquaculture is emerging as the fastest-growing sector in the world and contributes the best quality food for human consumption as a protein source. It has the immense capability to meet the food demand of the rising population all over the globe. But due to various activities, the quality of fish is degrading, affecting the overall consumption of fish and its demand in the market. The anthropogenic activity causes the depletion of water quality by increasing the unnecessary nutrient load in the water, which leads to various diseases in the water body. Recently, it has been observed that the use of nanotechnology can solve these modern problems in the aquaculture sector. It is emerging as an innovative tool for solving problems in the fields of aquatic health management, hatchery or breeding purposes, genetics and breeding, wastewater management, and so on. Nanotechnology is applied for the advancement of fish nutrition and feed development, which are prominent in aquaculture. Through various research, it has been proved that nanoparticles help to improve feed quality by enhancing the availability of micronutrients. It has been noticed that nanoparticles improve the growth, feed conversion ratio, percentage weight gain, and immune response of aquatic organisms. The application of nanotechnology in the aquaculture sector still requires deep research work. It has some negative impacts, but they can be resolved by researching the implications of green nanoparticles. The present book chapter aimed to provide a deep focus on the innovative and adaptable application of nanoparticles in aquaculture feed development, along with its various future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

% WG:

Percent weight gain

AgNPs:

Silver nanoparticles

AgNPs:

Silver nanoparticles

CD- TiO2:

Carbon dots coupled with titanium dioxide

CD:

Carbon dots

FCR:

Feed conversion ratio

Fe:

Iron

GIT:

Gastrointestinal tract

GSH-Px:

Glutathione peroxidase enzyme

Hb:

Haemoglobin

IGF-1:

Insulin-like growth factor 1

IgM:

Immunoglobulin M

nFe:

Iron nanoparticles

NPs:

Nanoparticles

nSe:

Selenium nanoparticles

nTiO2:

Titanium dioxide nanoparticles

PL:

Post larvae

RBCs:

Red blood cells

ROS:

Reactive oxygen species

Se:

Selenium

SGR:

Specific growth rate

TiO2:

Titanium dioxide

WBCs:

White blood cells

Zn:

Zinc

ZnO:

Zinc oxide

ZnO-NP:

Zinc oxide nanoparticles

References

  • Abad-Álvaro I, Trujillo C, Bolea E, Laborda F, Fondevila M, Latorre MA, Castillo JR (2019) Silver nanoparticles-clays nanocomposites as feed additives: characterization of silver species released during in vitro digestions. Effects on silver retention in pigs. Microchem J 149:104040

    Article  Google Scholar 

  • Abd El-Naby AS, Al-Sagheer AA, Negm SS, Naiel MA (2020) Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromis niloticus. Aquaculture 515:734577

    Article  CAS  Google Scholar 

  • Ahmed F, Soliman FM, Adly MA, Soliman HA, El-Matbouli M, Saleh M (2019) Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: a review. Res Vet Sci 126:68–82

    Article  CAS  PubMed  Google Scholar 

  • Akbary P, Jahanbakhshi A (2019) Nano and macro iron oxide (Fe2O3) as feed additives: effects on growth, biochemical, activity of hepatic enzymes, liver histopathology and appetite-related gene transcript in goldfish (Carassius auratus). Aquaculture 510:191–197

    Article  CAS  Google Scholar 

  • Aklakur M, Rather MA, Kumar N (2016) Nanodelivery: an emerging avenue for nutraceuticals and drug delivery. J Crit Rev Food Sci Nutr 56:2352–2361

    Article  CAS  Google Scholar 

  • Akter N, Alam MJ, Jewel MAS, Ayenuddin M, Haque SK, Akter S (2018) Evaluation of dietary metallic iron nanoparticles as feed additive for growth and physiology of Bagridae catfish Clarias batrachus (Linnaeus, 1758). Int J Fish Aquat Stud 6(3):371–377

    Google Scholar 

  • Al Ghais S, Bhardwaj V, Kumbhar P, Al Shehhi O (2019) Effect of copper nanoparticles and organometallic compounds (dibutyltin) on tilapia fish. J Basic Appl Zool 80(1):32

    Article  Google Scholar 

  • Alishahi A, Proulx J, Aider M (2014) Chitosan as biobased nanocomposite in seafood industry and aquaculture. In: Seafood science: advances in chemistry, technology and applications, vol 211. CRC Press, Boca Raton

    Google Scholar 

  • Baby R, Saifullah B, Hussein MZ (2019) Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett 14(1):1–17

    Article  CAS  Google Scholar 

  • Baldissera MD, Souza CF, Alessio KO, Krawczak KW, Abbad LB, da Silva AS, Bizzi C, Ourique AF, Zeppenfeld CC, Baldisserotto B, Cunha MA (2020) Diphenyl diselenide-loaded nanocapsules in silver catfish feed enhance growth, improve muscle antioxidant/oxidant status and increase selenium deposition: advantages of nanotechnology for fish health. Aquacult Res 51:1–3

    Article  Google Scholar 

  • Banach M, Tymczyna L, Chmielowiec-Korzeniowska A, Pulit-Prociak J (2016) Nanosilver biocidal properties and their application in disinfection of hatchers in poultry processing plants. Bioinorg Chem Appl 2016:1

    Article  Google Scholar 

  • Bradder P, Ling SK, Wang S, Liu S (2011) Dye adsorption on layered graphite oxide. J Chem Eng Data 56(1):138–141

    Article  CAS  Google Scholar 

  • Bunglavan SJ, Garg AK, Dass RS, Shrivastava S (2014) Use of nanoparticles as feed additives to improve digestion and absorption in livestock, 38

    Google Scholar 

  • Chaudhry Q, Castle L (2011) Food application of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:599

    Article  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol (Chicago) 60(3):30–36

    CAS  Google Scholar 

  • Chris UO, Singh NB, Agarwal A (2018) Nanoparticles as feed supplement on growth behaviour of cultured catfish (Clarias gariepinus) fingerlings. Mater Today Proc 5(3):9076–9081

    Article  CAS  Google Scholar 

  • Dawood MA, Koshio S, Zaineldin AI, Van Doan H, Ahmed HA, Elsabagh M, Abdel-Daim MM (2019) An evaluation of dietary selenium nanoparticles for red sea bream (Pagrus major) aquaculture: growth, tissue bioaccumulation, and antioxidative responses. Environ Sci Pollut Res 26(30):30876–30884

    Article  CAS  Google Scholar 

  • Dawood MA, Basuini MFE, Yilmaz S, Abdel-Latif HM, Kari ZA, Abdul Razab MKA et al (2021) Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: a review. Antioxidants 10(9):1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Silva C, Nawawi NM, Abd Karim MM, Abd Gani S, Masarudin MJ, Gunasekaran B, Ahmad SA (2021) The mechanistic action of biosynthesised silver nanoparticles and its application in aquaculture and livestock industries. Animals 11(7):2097

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Cheng Q (2003) Affects of nano-selenium on the growth of Nile tilapia (Oreochromis niloticus). Inland Aquat Prod 6:28–30

    Google Scholar 

  • Deshmukh SP, Patil SM, Mullani SB, Delekar SD (2019) Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C 97:954–965

    Article  CAS  Google Scholar 

  • Faiz H, Zuberi A, Nazir S, Rauf M, Younus N (2015) Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int J Agric Biol 17(3):568

    Article  CAS  Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    Article  CAS  Google Scholar 

  • FSAI (Food Safety Authority of Ireland) (2008) The relevance for food safety of applications of nanotechnology in the Food and Feed Industries Abbey Court, Lower Abbey Street, Dublin

    Google Scholar 

  • Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J (2016) Nanoparticles in feed: progress and prospects in poultry research. Trends Food Sci Technol 58:115–126

    Article  CAS  Google Scholar 

  • Hajirezaee S, Mohammadi G, Naserabad SS (2020) The protective effects of vitamin C on common carp (Cyprinus carpio) exposed to titanium oxide nanoparticles (TiO2-NPs). Aquaculture 518:734734

    Article  CAS  Google Scholar 

  • Handy RD (2012) FSBI briefing paper: nanotechnology in fisheries and aquaculture. Fisheries Society of the British Isles, 4, 1–29

    Google Scholar 

  • Izquierdo MS, Ghrab W, Roo J, Hamre K, Hernández-Cruz CM, Bernardini G et al (2017) Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquac Res 48(6):2852–2867

    Article  CAS  Google Scholar 

  • Jimenez-Fernández E, Ruyra A, Roher N, Zuast E, Infante C, Fernández-Díaz C (2014) Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture 432:426–433

    Article  Google Scholar 

  • Kalatehjari P, Yousefian M, Khalilzadeh MA (2015) Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisii kutum) eggs. Egypt J Aquat Res 41(4):303–306

    Article  Google Scholar 

  • Khan FA, Khan F (2020) Applications of nanomaterials in human health. Springer, Singapore

    Book  Google Scholar 

  • Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24(21):17326–17346

    Article  Google Scholar 

  • Longbaf Dezfouli M, Ghaedtaheri A, Keyvanshokooh S, Salati AP, Mousavi SM, Pasha-Zanoosi H (2019) Combined or individual effects of dietary magnesium and selenium nanoparticles on growth performance, immunity, blood biochemistry and antioxidant status of Asian seabass (Lates calcarifer) reared in freshwater. Aquac Nutr 25(6):1422–1430

    Article  CAS  Google Scholar 

  • Louros VL, Ferreira LM, Silva VG, Silva CP, Martins MA, Otero M, Esteves VI, Lima DL (2021) Photodegradation of aquaculture antibiotics using carbon dots-TiO2 nanocomposites. Toxics 9(12):330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majhi KC, Yadav M (2021) Synthesis of inorganic nanomaterials using carbohydrates. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, Amsterdam, pp 109–135

    Chapter  Google Scholar 

  • Maqsood S, Singh P, Samoon MH, Khansaheb Balange A (2010) Effect of dietary chitosan on non-specific immune response and growth of Cyprinus carpio challenged with Aeromonas hydrophila. Int Aquat Res 2(2):77–85

    Google Scholar 

  • Márquez JCM, Partida AH, del Carmen M, Dosta M, Mejía JC, Martínez JAB (2018) Silver nanoparticles applications (AgNPS) in aquaculture. Int J Fish Aquat Stud 6(2):5–11

    Google Scholar 

  • Moges FD, Paritosh P, Parashar SKS, Das B (2020) Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: a holistic review. Aquaculture 519:734770, 2

    Article  Google Scholar 

  • Mondal AH, Behera T, Swain P, Das R, Sahoo SN, Mishra SS, Das J, Ghosh K (2020) Nano zinc vis-à-vis inorganic Zinc as feed additives: effects on growth, activity of hepatic enzymes and non-specific immunity in rohu, Labeo rohita (Hamilton) fingerlings. Aquac Nutr 26(4):1211–1222

    Article  CAS  Google Scholar 

  • Munawar N (2021) Interaction and applications of nanoparticles in fishes and aquaculture. Sch Bull 7(6):150–155

    Google Scholar 

  • Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Manickam N, Srinivasan V (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biol Trace Elem Res 160(1):56–66

    Article  CAS  PubMed  Google Scholar 

  • Naiel MA, Ismael NE, Abd El-hameed SA, Amer MS (2020) The antioxidative and immunity roles of chitosan nanoparticle and vitamin C-supplemented diets against imidacloprid toxicity on Oreochromis niloticus. Aquaculture 523:735219

    Article  CAS  Google Scholar 

  • Niu J, Lin HZ, Jiang SG, Chen X, Wu KC, Liu YJ, Wang S, Tian LX (2013) Comparison of effect of chitin, chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine on growth performance, antioxidant defenses and oxidative stress status of Penaeus monodon. Aquaculture 372:1–8

    Article  Google Scholar 

  • Özkan F, Gündüz SG, Berköz M, Hunt AÖ, Yalın S (2012) The protective role of ascorbic acid (vitamin C) against chlorpyrifos-induced oxidative stress in Oreochromis niloticus. Fish Physiol Biochem 38:635–643

    Article  PubMed  Google Scholar 

  • Pacitti D, Lawan MM, Feldmann J, Sweetman J, Wang T, Martin SAM, Secombes CJ (2016) Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®. BMC Genomics 17(1):1–26

    Article  Google Scholar 

  • Peters R, ten Dam G, Bouwmeester H, Helsper H, Allmaier G, vd Kammer F, Ramsch R, Solans C, Tomaniová M, Hajslova J, Weigel S (2011) Identification and characterization of organic nanoparticles in food. TrAC Trends Anal Chem 30(1):100–112

    Article  CAS  Google Scholar 

  • Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ, Rauscher H (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164

    Article  CAS  Google Scholar 

  • Pudake RN, Chauhan N, Kole C (eds) (2019) Nanoscience for sustainable agriculture. Springer International Publishing, Cham, p 711

    Google Scholar 

  • Qiang L, Arabeyyat ZH, Xin Q, Paunov VN, Dale IJ, Lloyd Mills RI, Rotchell JM, Cheng J (2020) Silver nanoparticles in zebrafish (Danio rerio) embryos: uptake, growth and molecular responses. Int Journal of Molecular Sciences 21(5):1876

    Article  CAS  PubMed  Google Scholar 

  • Ramsden CS, Smith TJ, Shaw BJ, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18(7):939–951

    Article  CAS  PubMed  Google Scholar 

  • Rather MA, Sharma R, Aklakur M, Ahmad S, Kumar N, Khan M, Ramya VL (2011) Nanotechnology: a novel tool for aquaculture and fisheries development. A prospective mini-review. Fish Aquacult J 3:16

    Google Scholar 

  • Rather MA, Sharma R, Gupta S, Ferosekhan S, Ramya VL, Jadhao SB (2013) Chitosan-nanoconjugated hormone nanoparticles for sustained surge of gonadotropins and enhanced reproductive output in female fish. PLoS One 8(2):e57094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathore SS, Murthy HS, Abdullah-Al Mamun M, Nasren S, Rakesh K, Kumar BTN, et al. (2020) Nano-selenium supplementation to ameliorate nutrition physiology, immune response, antioxidant system and disease resistance against Aeromonas hydrophila in Monosex Nile Tilapia (Oreochromis niloticus). Biol Trace Elem Res 99(8):3073–3088. https://doi.org/10.1007/s12011-020-02416-0. PMID: 33025518.

  • Sarkar B, Mahanty A, Gupta SK, Choudhury AR, Daware A, Bhattacharjee S (2021) Nanotechnology: a next-generation tool for sustainable aquaculture. Aquaculture 546:737330

    Article  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:44

    Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine 12(3):701–710

    Article  CAS  PubMed  Google Scholar 

  • Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12(2):925–942

    Article  Google Scholar 

  • Shiwen H, Ling W, Lianmeng L, Yuxuan H, Lu L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Sonkusre P, Nanduri R, Gupta P, Cameotra SS (2014) Improved extraction of intracellular biogenic selenium nanoparticles and their specificity for cancer chemoprevention. J Nanomed Nanotechnol 5(2):1

    Article  Google Scholar 

  • Tawfik M, Moustafa M, Abumourad IMK, El-Meliegy E, Refai M (2017, August). Evaluation of Nano zinc oxide feed additive on tilapia growth and immunity. In 15th international conference on environmental science and technology, Rhodes, Greece (Vol. 1342, No. 1, pp. 1–9)

    Google Scholar 

  • Thangapandiyan S, Alisha AA, Anidha K (2020) Growth performance, hematological and biochemical effects of iron oxide nanoparticles in Labeo rohita. Biocatal Agric Biotechnol 25:101582

    Article  Google Scholar 

  • Tórtora-Pérez JL (2010) The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res 89(2–3):185–192

    Google Scholar 

  • Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151(1–4):185–207

    Article  CAS  Google Scholar 

  • Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291(1–2):78–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetham Elumalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

George, D. et al. (2023). Nanotechnology: A Novel Tool for Aquaculture Feed Development. In: Kirthi, A.V., Loganathan, K., Karunasagar, I. (eds) Nanotechnological Approaches to the Advancement of Innovations in Aquaculture. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-15519-2_4

Download citation

Publish with us

Policies and ethics