Skip to main content

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 170 Accesses

Abstract

Aquaculture is an age-old process of maintaining enclosed water for growing aquatic creatures such as fish and shellfish and collecting the products for human benefit. It is the growing and harvesting of freshwater and marine plants and animals under human supervision. Fish farming, fish culture, mariculture, fish breeding, and ocean ranching are all examples of aquaculture. Aquaculture activities are an important aspect of fisheries and aquatic resource management all over the world. Nanotechnology has developed a number of effective vaccine delivery technologies that have assisted in safeguarding encapsulated antigens from the hostile gastrointestinal environment and also maintained the sustained release, which was triggering the vaccine’s immunostimulatory effects. In this chapter, the presence of nanotechnology in fisheries and aquaculture is to be accounted for.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasjord PM, Slinde E (1994) Fish vaccine: development, production and use of bacterial vaccines, with special reference to salmon. In: Martin AM (ed) Fisheries processing, biotechnological applicaiton. Chamen & Hall, London, pp 432–465

    Chapter  Google Scholar 

  • Anderson ED, Leong JC (2000) Development of DNA vaccines for slamonid fish. In: Lowrie DB, Whalen RG (eds) Methods in molecular medicine. DNA vaccines: methods and protocols. Humanana Press, Toltawa, pp 105–121

    Google Scholar 

  • Aravena AR, Fuentes Y, Cartagena J, Brito T, Poggio V, Torre JL, Mendoza H, Nilo FG, Sandino AM, Spencer E (2015) Development of a nanoparticle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus replicon as adjuvant. Fish Shellfish Immunol 45(1):1–10

    Google Scholar 

  • Benmanzour A, de Kinkelin P (1997) Live fish vaccines; history and perspectives. In: Gudding R, Lillehaug A, Midtlyng PJ, Brown F (eds) Fish vaccinology developments in biological standardization, vol 90. Karger, Basel, pp 279–289

    Google Scholar 

  • Boudinot P, Blanco M, de Kinkelin P, Benmasour A (1998) Combined DNA immunisation with the glycoprotein gene of viral hemorrhagic septicaemia virus and infectious hematopoietic necrosis virus induces double – specific protectice immunity and nonspecific response in rainbow trout. Virology 249(2):297–306

    Article  CAS  PubMed  Google Scholar 

  • Ceccarelli D, Hasan NA, Huq A, Colwell RR (2013) Distribution of dyonamics of epidemic and pandemic vibrio parahaemolyticys virulence factors review article. Front Cell Infect Microbiol

    Google Scholar 

  • Chakarabarti SR, Chaudhuri K, Sen K, Das J (1996) Porinsof vibrio cholera purification and characterization of OmpU. J Bacterial 178(2):524–530

    Article  Google Scholar 

  • Chen SN, Huang SL, G. H (1992) Studies on the epizootiology and pathogenicity of bacterial infections in cultured gaint tiger prawns. Penaeus monodon, in Taiwan. In: Diseases of cultured penaeid prawn in Asia and the United States. Hawaii Oceanic, Hawaii, pp 195–205

    Google Scholar 

  • Corbeil S, Kurath G, LaPatra SE (2000) Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunization. Fish Shellfish Immunol 10:711–723

    Article  CAS  PubMed  Google Scholar 

  • Couch JA (1978) Diseases, parasites and toxic response of commercial penaeidprawns of the Gulf of Mexico and South Atlantic coasts of Atlantic coasts of North American. Fish Bull 76:1–44

    Google Scholar 

  • Davis HL, McCluskie MJ (1999) DNA vaccines for viral diseases. Microbes Infect 1:7–21

    Article  CAS  PubMed  Google Scholar 

  • De la Pena LD, Tamaki T, Momoyama K, Nakai T, Muroga K (1993) Characteristics of the causative bacterium for vibriosis in the kuruma prawn, Penaeusjaponocus. Aquaculture 115:1–12

    Article  Google Scholar 

  • Dehghani S, Akhlaghi M, Dehghani M (2012) Efficacy of formalin-killed, heat-killed and lipopolysaccharide vaccines against motile aeromonads infection in rainbow trout (Oncorhynchus mykiss) aquatic animal health unit, School of Veterinary Medicine, Shiraz University, shiraz, Iran. Glob Vet 9(4):409–415

    Google Scholar 

  • Doll TA, Raman S, Dey R, Burkhard P (2013) Nanoscale assemblies and their biomedical applications. J R Soc Interf 10:20120740

    Article  Google Scholar 

  • Evelyn TPT (1997) A historical review of fish vaccinology. In: Gudding R, Lillehaug A, Midtlyng PJ, Brown F (eds) Fish vaccinology. Developments ion biological standardization, vol 90. Karger, Basel, pp 3–12

    Google Scholar 

  • Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5559

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez Chiarri M, Livingston SK, Muro Cacho C, Sanders S, Levine RP (1996) Introduction of foreign genes into the tissue of live fish by direct injection and particle bombardment. Dis Aquat Org 27(1):5–12

    Article  CAS  Google Scholar 

  • Gregory AE, Titball R, Williamson D (2013) Vaccine delivery using nanoparticles. Front Cell Infect Mi 3:3389

    Google Scholar 

  • Haldar S, Maharajan A, Chatterjee S, Hunter SA, Chowdhury N et al (2010) Identification of Vibrio harveyi as a causative bacterium for a tail rot disease of sea bream Sparusaurata, from research hatchery im Malta. Microbiol Res 165:639–648

    Article  CAS  PubMed  Google Scholar 

  • Halperin S, Shefiele DE, Mcdonald NE, FRCPC (1992) Acellular versus whole-cell pertussis vaccines. Can J Infect Dis 3(2):57–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanfman DT (1993) Aquaculture: January 1990 - July 1993. Beltsville, MD: National Agricultural Library

    Google Scholar 

  • Heppell J, Davis HL (2000) Application of DNA vaccine technology to aquaculture. Adv Drug Deliv Rev 43:29–43

    Article  CAS  PubMed  Google Scholar 

  • Jayasree L, Janakiram P, Madhavi R (2006) Characterization of Vibrio spp. associated with diseased shrimp from culture ponds of Andhra Pradesh (India). J World Aquacult Soc 37(4):523–532

    Google Scholar 

  • Jiravanichpaisal P, Miyazaki T, Limsuwan C (1994) Histopathology, biochemistry and pathogenicity of vibrio harveyi infecting black tiger prawn, Penaeus monodon. J Aquat Anim Health 6:27–35

    Article  Google Scholar 

  • Jones SRM (2001) Plasmids in DNA vaccination. In: Schleet M (ed) Plasmids for therapy and vaccination. Wiley, Weinheim, pp 169–191

    Chapter  Google Scholar 

  • Kim YB, Okuda J, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M (1999) Identification of vibrio parhaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37(4):1173–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyk MA, Burian JM, Machander D (2001) An efficacious recombinant subunit vaccine against the salmonid rickettsial pathogen Piscirickettsia slamonis. Vaccine 19:2337–2344

    Article  CAS  PubMed  Google Scholar 

  • Lai W, Hu Z, Fang Q (2013) The concerns on biosafety of nanomaterials. JSM Nanotech Nanomed 1:1009

    Google Scholar 

  • Lavilla-Pitago CR, de la Pena LD (1998) Bacterial disease in prawn (Penaeus monodon) culture in Philippines. Fish Pathol 33:405–411

    Article  Google Scholar 

  • Lavilla-Pitago CR, Leano EM, Paner MG (1998) Mortalities of pond-cultured juvenile prawn, Penaeus monodon, associated with dominance of luminescent Vibrios, in the rearing environment. Aquaculture 164:337–349

    Article  Google Scholar 

  • Lee JK, Jung DW, Eom SY, Oh SW, Kim YJ, Kwak HS et al (2008) Occurrence of Vibrio parahaemolyticus in oysters from Korean retail outlets. Food Control 19:990–994. https://doi.org/10.1016/j.foodcont.2007.10.006

  • Leong JC, Anderson E, Bootland LM, Chiou PW, Johnson M, Kim C, Mourich D, Trobridge G (1997) Fish vaccine antigens produced or delivered by recombinant DNA technologies. Dev Biol Stand 90:267–277

    Google Scholar 

  • Li L, Lin SL, Deng L, Liu ZG (2013) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black sea bream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J Fish Dis 36(12):987–995

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Arjun S, Nani W, Chun XZ, Neena M, Chengzhong Y, Anton PJ, Middelber (2014) Nanoparticle vaccines. Vaccine 32:327–337

    Article  Google Scholar 

  • Lightner DV (1983) Disease of cultured penaeid prawn. In: Mcvey (ed) CRC hand book of mariculture, Crustcean aquaculture, vol 1. CRC Press, Boca Raton, pp 289–320

    Google Scholar 

  • Lightner DV (1985) A review of the diseases of culture penaeid prawns and prawns with emphasis on recent discoveries and developments, pp 79–103

    Google Scholar 

  • Lightner DV (1988) Vibrio disease of penaeidprawn. In: CJ, pp 42–47

    Google Scholar 

  • Lightner DV (1996) Handbook of prawn pathology and diseases of cultured penaeidprawn. World Aquaculture Society, Baton Rouge

    Google Scholar 

  • Lopez-Doriga MV, Smail DA, Smith RJ (2001) Isolaiton of Salmon pancreas disease virus (SPDV) in cell culture and its ability to protect against infection by the wild type agent. Fish Shellfish Immunol 11:505–522

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen E, Einer-Jensen K, Martinussen T, LaPatra SE, Lorenzen N (2000) DNA vaccination of rainbow trout against viral hemorrhagic septicemia virus: a dose-response and time-course study. J Aquat Anim Health 12(3):167–180

    Article  Google Scholar 

  • Lorenzen N, Lorenzen E, Einer-Jensen K, LaPatra SE (2002) DNA vaccines as a tool for analyzing the protective immune response against rhabdoviruses in rainbow trout. Fish Shellfish Immunol 12:439–453

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen E, Lorenzen N, Einer-Jenson K, Brudeseth B, Evenzen Ø (2005) Time course study of in situ expression of antigens following DNA vaccination against VHS in rainbow trout (Oncorhynchus mykiss, valbaum) fry. Fish Shellfish Immunol 19(1):27–41

    Article  CAS  PubMed  Google Scholar 

  • Maiti B, Dubey S, Munang’andu HM, Karunasagar I, Karunasagar I, Evensen Ø (2020) Application of outer membrane protein-based vaccines against major bacterial fish pathogens in India. Front Immunol 11:1362. https://doi.org/10.3389/fimmu.2020.01362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamo T, Poland GA (2012) Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine 30:6609–6611

    Article  CAS  PubMed  Google Scholar 

  • McLauchlan PE, Collet B, Ingerslev E, Secombes CJ, Lorenzen N, Ellis AE (2003) DNA vaccination against viral haemorrhagic septicaemia (VHS) in rainbow trout: size, dose, route of injection and duration of protection – early protection correlates with Mx expression. Fish Shellfish Immunol 15(1):39–50

    Article  CAS  PubMed  Google Scholar 

  • Mialhe E, Bachere E, Boulo V, Cadoret JP, Rousseau C, CedeZo V, Saraiva E, Carrera L, Calderon J, Colwell RR (1995) Future of biotechnology-based control of disease in marine invertebrates. Mol Mar Biol Biotechnol 4:275–283

    CAS  PubMed  Google Scholar 

  • Mohamed S, Mona S, Magdy EM, Mansour EM (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomedicine 12:701–710

    Article  Google Scholar 

  • Mohney L, Bell A, Lightner DV (1994) An epizootic of vibriosis in Equadorian pond-reared Penaeus vannamei Boone (Crustacea:Decapoda). J World Aquac Soc 25:116–125

    Article  Google Scholar 

  • Munn CB (1994) The use of recombinant DNA technology in the development of fish vaccines. Fish Shellfish Immunol 4:459–473

    Article  Google Scholar 

  • Newman SG (1993) Bacterial vaccines for fish. Annu Rev Fish Dis 3:145–185

    Google Scholar 

  • Nirmal M, Mariusz S, Istvan T (2014) Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines. https://doi.org/10.1586/14760584.2014.936852

  • Overstreet RM (1978) Marine maladies. Worms, germs and germs and other symbionts from the Norhtern Gulf of Mexico. Mississippi Alabama Sea Grant Consortium, Ocean Springs, Mississippi, USA

    Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Application of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181

    Article  Google Scholar 

  • Pasnik DJ, Smith SA (2005) Immunogenic and protective effects of a DNA vaccine for Mycobacterium marinum in fish. Vet Immunol Immunopathol 103(3–4):195–206

    Article  CAS  PubMed  Google Scholar 

  • Pridgeon JW, Klesius PH (2010) Fish vaccines in aquaculture–proactive treatment protects salmon, catfish, other fish. Global Aquaculture Advocate

    Google Scholar 

  • Purcell MK, Kurath G, Garver KA, Herwig RP, Winton JR (2004) Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunol 17(5):447–462

    Article  CAS  PubMed  Google Scholar 

  • Rajesh Kumar S, Parameswaran V, Ishaq Ahmad VP, Syed Mustaq S, Sahul Hameed AS (2007) Protective efficiency of DNA vaccination in Asian sea bass (Lates calcarifer) against vibrio anguillarum. Fish Shellfish Immunol 23:316–326

    Article  PubMed  Google Scholar 

  • Rajesh Kumar S, Ishaq Ahmed VP, Parameswaran V, Sudhakaran R, Sarath Babu V, Hameed ASS (2008) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Latescalcarifer) to protect from Vibrio (Listonella)anguillarum. Fish Shellfish Immunol 25:47–56

    Article  CAS  PubMed  Google Scholar 

  • Ronen A, Perelberg A, Abramowitz J (2003) Efficient vaccine against the virus causing a lethal disease in cultured Cyprinuz Carpio. Vaccine 21:4677–4684

    Article  CAS  PubMed  Google Scholar 

  • Ruangpan L, Kitao J (1992) Minimal inhibitory concentrations of 19 chemotherapeutants against Vibrio bacteria of prawn Penaeus monodon. In: Shariff M et al (eds) Disease of Asian aquaculture, pp 135–142

    Google Scholar 

  • Sarathi M, Simon MC, Ishaq Ahmed VP, Rajesh Kumar S, Sahul Hameed AS (2007) Silencing VP28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA

    Google Scholar 

  • Schnick RA, Alderman DJ, Armstrong R, Le Gouvello R, Ishihara S, Lacierda EC, Percival S, Roth M (1997) Worldwide aquaculture drug and vaccine registration progress. Bull Eur Assoc Fish Pathol 17:251–260

    Google Scholar 

  • Sindermann CJ (1990) Principal diseases of marine fish and shell fish, vol 2. Gulf Professional Publishing

    Google Scholar 

  • Sommerset I, Skern R, Biering E, Bleie H, Fiksdal IU, Grove S, Nerland AH (2005) Protection against Atlantic halibut nodavirus in turbot is induced by recombinant capsid protein vaccination but not following DNA vaccination. Fish Shellfish Immunol 18(1):13–29

    Article  CAS  PubMed  Google Scholar 

  • Sudhakaran R, Syed Musthaq S, Rajesh Kumar S, Sarathi M, Sahul Hameed AS (2008) Cloning and sequencing of capsid protein of Indian isolate of extra small virus from Macrobrachium rosenbergii. Virus Res 131:283–287

    Article  CAS  PubMed  Google Scholar 

  • Tissot AC, Maurer P, Nussberger J, Sabat R, Pfister T, Ignatenko S (2008) Effect of immunisation against angiotension II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomized, placebo-controlled phase IIa study. Lancet 371:821–827

    Article  CAS  PubMed  Google Scholar 

  • Vesely T, Pokorova D, Einer-Jensen K, Lorenzen N (2004) DNA vaccination of small carp (Cyprinus carpio) against SVCV: the protective effect depends on temperature. In: Book of Abstracts, 6th international symposium on fish immunology. 26–29 May, Turku, Finland, p 43

    Google Scholar 

  • Vinay NT, Choudhury TG, Paria A, Gupta SK, Sarkar B (2016) Nanovaccines: a possible solution for mass vaccination in aquaculture. World Aquaculture. https://www.researchgate.net/publication/313846676_Nanovaccines_a_Possible_Solution_for_Mass_Vaccination_in_Aquaculture/citations

  • Vinay TN, Bhat S, Choudhury TG, Paria A, Jung MH, Kallappa GS, Jung SJ (2017) Recent advances in application of nanoparticles in fish vaccine delivery. Rev Fish Sci Aquac 26(1):29–41

    Article  Google Scholar 

  • Yang J, Wu X, Zc S (1992) Observations on black spot on shell disease of cultivated penaeidprawn by SEM. Donghai Mar Sci 11:34–39

    CAS  Google Scholar 

  • Ye Y, Xiuli W, Sheping G, Xuemei Q (2010) Gene cloning and prokaryotic expression of recombinant outer membrane protein from vibrio parahaemolyticus. Chin J Oceanol Limnol 29(5):952–957

    Google Scholar 

  • Yildirimer L, Thanh NT, Loizidou M, Seifalin AM (2011) Toxicological considerations of clinically applicable nanoparticles. NanoToday 6:585–607

    Article  CAS  PubMed  Google Scholar 

  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X (2012) The process of silver nanoparticles in antimicrobial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman M, Good MF, Toth I (2013) Nanovaccines and their mode of action. Methods 60:226–231

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhu C, Xiao F, Liu X, Xie A, Chen F, Dong P, Lin P, Zheng C, Zhang H, Gong H, Wu Y (2021) pH-controlled release of antigens using mesoporous silica nanoparticles delivery system for developing a fish oral vaccine. Front Immunol 12:644396. https://doi.org/10.3389/fimmu.2021.644396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg APJ (2014) Nanoparticle vaccines. Vaccine 32:327–337

    Article  PubMed  Google Scholar 

  • Zhu B, Zhang C, Zhao Z, Wang GX (2020) Targeted delivery of monosylated nanoparticles improve prophylactic efficacy of immersion vaccine against fish viral disease. Vaccine 8(1):87. https://doi.org/10.3390/vaccines8010087

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mondal, H., Thomas, J. (2023). Nanotechnologies in Controlling Aquatic Diseases. In: Kirthi, A.V., Loganathan, K., Karunasagar, I. (eds) Nanotechnological Approaches to the Advancement of Innovations in Aquaculture. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-15519-2_2

Download citation

Publish with us

Policies and ethics