Skip to main content

Global Warming Impacts on the Environment in the Last Century

  • Chapter
  • First Online:
Ecological Footprints of Climate Change

Abstract

Global warming is continuing to occur globally as result of fossil fuel burning and no signs of decreasing concentration of greenhouse gases. The environment is highly dependent on the climate of a particular region. Any variation may negatively impact the proper functioning and processes of the ecosystem. Every sector is severely under threat of global warming and its associated impacts. The consequences include reduced agricultural productivity, forest degradation, biodiversity loss, species shift, sea level rise, habitat loss, enhanced land degradation, increased occurrences of cyclones, floods and heat waves, and so on. In recent decades the impact of climate change is observed more frequently. The preparedness against the adverse impact is vital. It indicates the development of a climate-resilient sustainable community for tackling the climate change and associated issues. Policies and proper implementation generated through site-specific impact studies will help us achieve the targets. A case study conducted at various watersheds of Himalayan region showed increase in temperature and rainfall under various IPCC emission scenarios. Hence, the fragile Himalayas necessitate the development of climate-resilient sustainable communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abram NJ, Henley BJ, Sen Gupta A, Lippmann TJ, Clarke H, Dowdy AJ et al (2021) Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun Earth Environ 2(1):1–17

    Article  ADS  Google Scholar 

  • Acharya AK, Kafle N (2009) Land degradation issues in Nepal and its management through agroforestry. J Agric Environ 10:133–143

    Article  Google Scholar 

  • Adams CR, Eswaran H (2000) Global land resources in the context of food and environmental security. In: Gawande SP (ed) Advances in land resources management for the 20th century. New Delhi, Soil Conservation Society of India, pp 35, 655 pp–50

    Google Scholar 

  • Aggarwal PK (2003) Impact of climate change on Indian agriculture. J Plant Biol 30(2):189–198

    Google Scholar 

  • Alkama R, Decharme B, Douville E, Becker M, Cazenave A, Sheffield J, Voldoire A, Tyteca S, Lemoigne P (2010) Global evaluation of the ISBA-TRIP continental hydrological system. Part 1: A twofold constraint using GRACE terrestrial water storage estimates and in situ River discharges. J Hydrometeorol 11(3):583–600. https://doi.org/10.1175/2010JHM1211.1

    Article  ADS  Google Scholar 

  • Al-Zubari WK, El-Sadek AA, Al-Aradi MJ, Al-Mahal HA (2018) Impacts of climate change on the municipal water management system in the Kingdom of Bahrain: vulnerability assessment and adaptation options. Clim Risk Manag 20(2006):95–110. https://doi.org/10.1016/j.crm.2018.02.002

    Article  Google Scholar 

  • Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348(6235):1261071

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. https://doi.org/10.1002/joc.859

    Article  Google Scholar 

  • Bai ZG, Dent DL, Olsson L, Schaepman ME (2008) Global assessment of land degradation and improvement 1. Identification by remote sensing. Report 2008/01. ISRIC, Wageningen

    Google Scholar 

  • Beisner BE, Haydon DT, Cuddington K (2003) Alternative stable states in ecology. Front Ecol Environ 1(7):376–382

    Article  Google Scholar 

  • Bell ML, Goldberg R, Hogrefe C, Kinney PL, Knowlton K, Lynn B et al (2007) Climate change, ambient ozone, and health in 50 US cities. Clim Chang 82(1):61–76

    Article  ADS  CAS  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15(4):365–377

    Article  Google Scholar 

  • Bereiter B, Eggleston S, Schmitt J, Nehrbass-Ahles C, Stocker TF, Fischer H et al (2015) Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys Res Lett 42(2):542–549. https://doi.org/10.1002/2014gl061957

    Article  ADS  Google Scholar 

  • Bergengren JC, Waliser DE, Yung YL (2011) Ecological sensitivity: a biospheric view of climate change. Clim Chang 107:433–457

    Article  ADS  CAS  Google Scholar 

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146

    Article  Google Scholar 

  • Bolte A, Hilbrig L, Grundmann BM, Roloff A (2014) Understory dynamics after disturbance accelerate succession from spruce to beech-dominated forest – the Siggaboda case study. Ann For Sci 71(2):139–147

    Article  Google Scholar 

  • Bray MJ, Hooke JM (1997) Prediction of soft-cliff retreat with accelerating sea-level rise. J Coast Res:453–467

    Google Scholar 

  • Brevik EC (2012) Soils and climate change: gas fluxes and soil processes. Soil Horiz 53. https://doi.org/10.2136/sh12-04-0012

  • Brevik EC (2013) Climate change, soils, and human health. In: Brevik EC, Burgess LC (eds) Soils and human health. CRC Press, Boca Raton, pp 345–383

    Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    Article  ADS  CAS  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  CAS  Google Scholar 

  • Chmura DJ, Anderson PD, Howe GT et al (2011) Forest responses to climate change in the Northwestern United States: ecophysiological foundations for adaptive management. For Ecol Manag 261:1121–1142

    Article  Google Scholar 

  • Clark JS, Iverson L, Woodall CW, Allen CD, Bell DM, Bragg DC et al (2016) The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob Chang Biol 22(7):2329–2352

    Article  ADS  Google Scholar 

  • Costa AC, Soares A (2012) Local spatiotemporal dynamics of a simple aridity index in a region susceptible to desertification. J Arid Environ 87:8–18

    Article  Google Scholar 

  • Costanza R, Fisher B, Mulder K, Liu S, Christopher T (2007) Biodiversity and ecosystem services: a multi-scale empirical study of the relationship between species richness and net primary production. Ecol Econ 61(2–3):478–491

    Article  Google Scholar 

  • Coyle C, Creamer RE, Schulte RPO, O'Sullivan L, Jordan P (2016) A functional land management conceptual framework under soil drainage and land use scenarios. Environ Sci Pol 56:39–48. https://doi.org/10.1016/j.envsci.2015.10.012

    Article  Google Scholar 

  • Cramer W, Yohe G, Auffhammer M, Huggel C, Leemans R (2014) Detection and attribution of observed impacts, impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Clim Change 6(2):13–36. https://doi.org/10.1017/CBO9781107415379.005

    Article  Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415(6867):23. https://doi.org/10.1038/415023a

    Article  ADS  CAS  Google Scholar 

  • Dasgupta S, Hossain M, Huq M, Wheeler D (2015) Climate change and soil salinity: the case of coastal Bangladesh. Ambio 44(8):815–826

    Article  Google Scholar 

  • David Raj A, Kumar S, Sooryamol KR (2022) Modelling climate change impact on soil loss and erosion vulnerability in a watershed of Shiwalik Himalayas. Catena 214:106279

    Article  Google Scholar 

  • de Groot RS, Wilson MA, Boumans RM (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408

    Article  Google Scholar 

  • Devi RM, Patasaraiya MK, Sinha B, Saran S, Dimri AP, Jaiswal R (2018) Understanding the linkages between climate change and forest. Curr Sci:987–996

    Google Scholar 

  • Douville H, Planton S, Royer JF, Stephenson DB, Tyteca S, Kergoat L et al (2000) Importance of vegetation feedbacks in doubled-CO2 climate experiments. J Geophys Res-Atmos 105(D11):14841–14861

    Article  ADS  CAS  Google Scholar 

  • Elminir HK (2005) Dependence of urban air pollutants on meteorology. Sci Total Environ 350(1–3):225–237

    Article  ADS  CAS  Google Scholar 

  • FAO (2022) Soils help to combat and adapt to climate change by playing a key role in the carbon cycle. https://www.fao.org/documents/card/en/c/39058c2c-991b-4a24-a0bd-ccd0544e8320/#:~:text=Healthy%20soils%20provide%20the%20largest,gas%20emissions%20in%20the%20atmosphere. Accessed 4 Mar 2022

  • FAO, ITPS (2015) The status of the world’s soil resources (Main report). FAO

    Google Scholar 

  • FAOSTAT (2019) Crops. Crop. Natl. Prod. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed 4 Mar 2022

  • Fiore AM, Naik V, Spracklen DV, Steiner A, Unger N, Prather M et al (2012) Global air quality and climate. Chem Soc Rev 41(19):6663–6683

    Article  CAS  Google Scholar 

  • Forkel M, Carvalhais N, Rödenbeck C, Keeling R, Heimann M, Thonicke K et al (2016) Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351(6274):696–699

    Article  ADS  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Van Dorland R (2007) Chapter 2: Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007. The Physical Science Basis

    Google Scholar 

  • Fujibe F (2009) Detection of urban warming in recent temperature trends in Japan. Int J Climatol 29:1811–1822. https://doi.org/10.1002/joc.1822

    Article  Google Scholar 

  • Giorgi F, Meleux F (2007) Modelling the regional effects of climate change on air quality. Compt Rendus Geosci 339(11–12):721–733

    Article  ADS  CAS  Google Scholar 

  • Grimm NB, Chapin FS III, Bierwagen B, Gonzalez P, Groffman PM, Luo Y et al (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11(9):474–482

    Article  Google Scholar 

  • Guerra AJT, Fullen MA, Jorge MDCO, Bezerra JFR, Shokr MS (2017) Slope processes, mass movement and soil erosion: a review. Pedosphere 27:27–41

    Article  Google Scholar 

  • Gupta S, Kumar S (2017) Simulating climate change impact on soil erosion using RUSLE model – a case study in a watershed of mid-Himalayan landscape. J Earth Syst Sci 126(3):1–20

    Article  Google Scholar 

  • Gupta S, Jain I, Johari P, Lal M (2019) Impact of climate change on tropical cyclones frequency and intensity on Indian coasts. In: Proceedings of international conference on remote sensing for disaster management. Springer, Cham, pp 359–365

    Chapter  Google Scholar 

  • Gutiérrez JM, Jones RG, Narisma GT, Alves LM, Amjad M, Gorodetskaya IV, Grose M, Klutse NAB, Krakovska S, Li J, Martínez-Castro D, Mearns LO, Mernild SH, Ngo-Duc T, van den Hurk B, Yoon J-H (2021) Atlas. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Interactive Atlas available from Available from http://interactive-atlas.ipcc.ch/ (Atlas). Accessed 12 Feb 2022. (in press)

    Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Chang 3:203–207

    Article  ADS  Google Scholar 

  • Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, Chateau J (2011) A global ranking of port cities with high exposure to climate extremes. Clim Chang 104(1):89–111

    Article  ADS  Google Scholar 

  • Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38(4):513–543

    Article  ADS  CAS  Google Scholar 

  • Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Hogg EH et al (2012a) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Chang Biol 18(1):7–34

    Article  ADS  Google Scholar 

  • Hicke JA et al (2012b) Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob Chang Biol 18:7–34

    Article  ADS  Google Scholar 

  • Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L et al (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21(1):50–63

    Article  Google Scholar 

  • Hisano M, Searle EB, Chen HY (2018) Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol Rev 93(1):439–456

    Article  Google Scholar 

  • Hoegh-Guldberg O et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742. https://doi.org/10.1126/science.1152509

    Article  ADS  CAS  Google Scholar 

  • Holloway T, Fiore A, Hastings MG (2003) Intercontinental transport of air pollution: will emerging science lead to a new hemispheric treaty? Environ Sci Technol 37(20):4535–4542

    Article  ADS  CAS  Google Scholar 

  • Hong C, Zhang Q, Zhang Y, Davis SJ, Tong D, Zheng Y et al (2019) Impacts of climate change on future air quality and human health in China. Proc Natl Acad Sci 116(35):17193–17200

    Article  ADS  CAS  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JE, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    Article  ADS  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change [IPCC], Climate Change 2013 (2013) The Physical Science Basis

    Google Scholar 

  • IPCC (1994) Climate change 1994. In: Houghton JT, Filho LGM, Bruce J, Lee H, Callander BA, Haites EF, Harris N, Maskell K (eds) Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2013a) Sea level change supplementary material. In: Church JA et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, Cambridge, pp 1–8

    Google Scholar 

  • IPCC (2013b) Climate change 2013. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) The Physical Science Basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, p 1535

    Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 1–32

    Google Scholar 

  • IPCC (2018) Global warming of 1.5 °C. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (in press)

    Google Scholar 

  • IPCC Climate change 2007: synthesis report – an assessment of the Intergovernment Panel on Climate Change, p 2007

    Google Scholar 

  • IPCC (Intergovernmental Panel for Climate Change) (2001) Climate change 2001 – The Scientific Basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 881

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the Physical Science Basis. Contribution of Working Group to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, p 1535

    Google Scholar 

  • Isaksen IS, Granier C, Myhre G, Berntsen TK, Dalsøren SB, Gauss M et al (2009) Atmospheric composition change: climate-chemistry interactions. Atmos Environ 43(33):5138–5192

    Article  ADS  CAS  Google Scholar 

  • Ishigaki T, Kawanaka R, Onishi Y, Shimada H, Toda K, Baba Y (2009) Assessment of safety on evacuating route during underground flooding. In: Advances in water resources and hydraulic engineering. Springer, Berlin/Heidelberg, pp 141–146

    Chapter  Google Scholar 

  • Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43(1):51–63

    Article  ADS  CAS  Google Scholar 

  • Jacobson MZ (2008) On the causal link between carbon dioxide and air pollution mortality. Geophys Res Lett 35(3)

    Google Scholar 

  • Jandl R, Spathelf P, Bolte A, Prescott CE (2019) Forest adaptation to climate change – is non-management an option? Ann For Sci 76(2):1–13

    Article  Google Scholar 

  • Jankowski KJ, Schindler DE (2019) Watershed geomorphology modifies the sensitivity of aquatic ecosystem metabolism to temperature. Sci Rep 9(1):1–10

    Article  CAS  Google Scholar 

  • Joët T, Ourcival JM, Dussert S (2013) Ecological significance of seed desiccation sensitivity in Quercus ilex. Ann Bot 111(4):693–701

    Article  Google Scholar 

  • Jones PG, Thornton PK (2000) MarkSim: software to generate daily weather data for Latin America and Africa. Agron J 92(3):445–453

    Article  Google Scholar 

  • Keeling CD, Whorf TP, Wahlen M, Van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670

    Article  ADS  CAS  Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75:779–786

    Article  Google Scholar 

  • Kumar KS, Parikh J (1998) Climate change impacts on Indian agriculture: the Ricardian approach. In: Dinar et al (eds) Measuring the impacts of climate change on indian agriculture, World Bank technical paper no. 402. World Bank, Washington, DC

    Google Scholar 

  • Lal R (1997) Deforestation effects on soil degradation and rehabilitation in western Nigeria. IV. Hydrology and water quality. Land Degrad Dev 8(2):95–126

    Article  Google Scholar 

  • Lal R (2010) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60:708–721

    Article  Google Scholar 

  • Lal R, Delgado JA, Groffman PM, Millar N, Dell C, Rotz A (2011) Management to mitigate and adapt to climate change. J Soil Water Conserv 66:276–285. https://doi.org/10.2489/jswc.66.4.276

    Article  Google Scholar 

  • Lee D, Min SK, Fischer E, Shiogama H, Bethke I, Lierhammer L, Scinocca JF (2018) Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics. Environ Res Lett 13(4):044033

    Article  ADS  Google Scholar 

  • Li P, Peng C, Wang M, Li W, Zhao P, Wang K et al (2017) Quantification of the response of global terrestrial net primary production to multifactor global change. Ecol Indic 76:245–255

    Article  CAS  Google Scholar 

  • Liao H, Chen WT, Seinfeld JH (2006) Role of climate change in global predictions of future tropospheric ozone and aerosols. J Geophys Res-Atmos 111(D12)

    Google Scholar 

  • Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2006) Impact of climate change on Indian agriculture. A review. Clim Chang 78:445–478

    Article  ADS  Google Scholar 

  • Manabe S, Wetherald R (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259

    Article  ADS  CAS  Google Scholar 

  • Marc L (2015) What is the greenhouse effect. http://www.livescience.com/37743-greenhouse-effect.html. Accessed 5 Mar 2022

  • Mariappan S, Hartley IP, Cressey EL, Dungait JAJ, Quine TA (2022) Soil burial reduces decomposition and offsets erosion-induced soil carbon losses in the Indian Himalaya. Glob Change Biol 28(4):1643–1658. https://doi.org/10.1111/gcb.15987

    Article  CAS  Google Scholar 

  • Mase H, Tamada T, Yasuda T, Karunarathna H, Reeve DE (2015) Analysis of climate change effects on seawall reliability. Coast Eng J 57(03):1550010

    Article  Google Scholar 

  • Melillo JM, Prentice IC, Farquhar GD, Schulze ED, Sala OE (1995) Terrestrial biotic responses to environmental change and feedbacks to climate. In: Houghton JT, Filho LGM, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Climate change. Cambridge University Press, New York

    Google Scholar 

  • Merlis TM, Zhou W, Held IM, Zhao M (2016) Surface temperature dependence of tropical cyclone-permitting simulations in a spherical model with uniform thermal forcing. Geophys Res Lett 43:2859–2865

    Article  ADS  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Synthesis Island Press, Washington, DC

    Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: whither water management? Science 319:573–574. https://doi.org/10.1126/science.1151915

    Article  CAS  Google Scholar 

  • Montanarella L (2015) Agricultural policy: govern our soils. Nature 528(7580):32–33

    Article  ADS  CAS  Google Scholar 

  • Murakami H, Vecchi GA, Underwood S (2017) Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nat Clim Chang 7(12):885

    Article  ADS  Google Scholar 

  • NOAA (2016) State of the climate: global climate report for annual 2015. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI). Available at: www.ncdc.noaa.gov/sotc/global/201513. Accessed 9 Feb 2022

  • Nolte CG, Gilliland AB, Hogrefe C, Mickley LJ (2008) Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. J Geophys Res-Atmos 113(D14)

    Google Scholar 

  • O'Hara KL (2016) What is close-to-nature silviculture in a changing world? For Int J For Res 89(1):1–6

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  ADS  CAS  Google Scholar 

  • Pan S, Tian H, Dangal SR, Ouyang Z, Lu C, Yang J et al (2015) Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J Geogr Sci 25(9):1027–1044

    Article  Google Scholar 

  • Pandey R, Jha S (2012) Climate vulnerability index-measure of climate change vulnerability to communities: a case of rural Lower Himalaya, India. Mitig Adapt Strateg Glob Chang 17(5):487–506

    Article  Google Scholar 

  • Pareek N (2017) Climate change impact on soils. Adapt Mitigat 2(3):2–5. https://doi.org/10.15406/mojes.2017.02.00026

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37

    Article  ADS  CAS  Google Scholar 

  • Pathak H, Ladha PK, Aggarwal S, Peng D, Singh Y, Singh B, Kamra SK, Mishra B, Sastri ASRAS, Aggarwal PK, Das DK, Gupta RK (2003) Trends of climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic Plains. Field Crop Res 80:223–234

    Article  Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532(7597):49–57

    Article  ADS  CAS  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Pelling M, Leck H, Pasquini L, Ajibade I, Osuteye E, Parnell S et al (2018) Africa’s urban adaptation transition under a 1.5 climate. Curr Opin Environ Sustain 31:10–15. https://doi.org/10.1016/j.cosust.2017.11.005

    Article  Google Scholar 

  • Pérez-Ramos IM, Rodríguez-Calcerrada J, Ourcival JM, Rambal S (2013) Quercus ilex recruitment in a drier world: a multi-stage demographic approach. Perspect Plant Ecol Evol Systematics 15(2):106–117

    Article  Google Scholar 

  • Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8:119–137

    Article  Google Scholar 

  • Pye HOT, Liao H, Wu S, Mickley LJ, Jacob DJ, Henze DK, Seinfeld JH (2009) Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J Geophys Res-Atmos 114(D1)

    Google Scholar 

  • Raj AD (2020) Modelling climate change impact on surface runoff and sediment yield in a watershed of Shivalik region. M.Sc. Thesis, Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara

    Google Scholar 

  • Ramanathan V, Coakley J (1978) Climate modeling through radiative-convective models. Rev Geophys Space Phys 16:465–490

    Article  ADS  CAS  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D et al (2013) Global carbon dioxide emissions from inland waters. Nature 503(7476):355–359

    Article  ADS  CAS  Google Scholar 

  • Reed MS, Buenemann M, Atlhopheng J, Akhtar-Schuster M, Bachmann F, Bastin G, Bigas H, Chanda R, Dougill AJ, Essahli W et al (2011) Cross-scale monitoring and assessment of land degradation and sustainable land management: a methodological framework for knowledge management. Land Degrad Dev 22:261–271

    Article  Google Scholar 

  • Revi A (2016) Afterwards: habitat III and the Sustainable Development Goals. Urbanisation 1(2):x–xiv. https://doi.org/10.1177/2455747116682899

    Article  Google Scholar 

  • Robinson DA, Panagos P, Borrelli P, Jones A, Montanarella L, Tye A, Obst CG (2017) Soil natural capital in Europe; a framework for state and change assessment. Sci Rep 7(1):1–14

    Article  Google Scholar 

  • Ruiz-Benito P, Ratcliffe S, Jump AS, Gómez Aparicio L, Madrigal-González J, Wirth C, Kändler G, Lehtonen A, Dahlgren J, Kattge J (2016) Functional diversity underlies demographic responses to environmental variation in European forests. Glob Ecol Biogeogr 26:128–141

    Article  Google Scholar 

  • Rumpel C, Amiraslani F, Chenu C, Garcia Cardenas M, Kaonga M, Koutika LS et al (2020) The 4p1000 initiative: opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio 49(1):350–360

    Article  Google Scholar 

  • Sakschewski B, von Bloh W, Boit A, Poorter L, Peña-Claros M, Heinke J, Joshi J, Thonicke K (2016) Resilience of Amazon forests emerges from plant trait diversity. Nat Clim Chang 6:1032–1036

    Article  ADS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  • Secretary General’s Report on Land Chapter of Agenda 21 to Commission on Sustainable Development (CSD8, UN, New York 2000) (1994) UNCCD Agenda 21, Rio de Janeiro, 1992 and UNCCD Paris

    Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G et al (2017) Forest disturbances under climate change. Nat Clim Chang 7(6):395–402

    Article  ADS  Google Scholar 

  • Selvaraju R (2003) Impact of El Nino-Southern oscillation on Indian food grain production. Int J Climatol 23:187–206

    Article  Google Scholar 

  • Shine KP, PM de F Forster (1999) The effects of human activity on radiative forcing of climate change: a review of recent developments. Glob Planet Chang 20:205–225

    Article  ADS  Google Scholar 

  • Sivakumar MVK (2007) Interactions between climate and desertification. Agric For Meteorol 142(2-4):143–155

    Article  ADS  Google Scholar 

  • Smith P, Calvin K, Nkem J, Campbell D, Cherubini F, Grassi G et al (2020) Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob Chang Biol 26(3):1532–1575

    Article  ADS  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855

    Article  Google Scholar 

  • Stern N (2015) Economic development, climate and values: making policy. Proc R Soc B Biol Sci 282(1812):20150820. https://doi.org/10.1098/rspb.2015.0820

    Article  Google Scholar 

  • Stockmann U, Padarian J, McBratney A, Minasny B, de Brogniez D, Montanarella L et al (2015) Global soil organic carbon assessment. Glob Food Secur 6:9–16. https://doi.org/10.1016/j.gfs.2015.07.001

    Article  Google Scholar 

  • Stone B (2007) Urban and rural temperature trends in proximity to large US cities: 1951–2000. Int J Climatol 27:1801–1807. https://doi.org/10.1002/joc.1555

    Article  ADS  Google Scholar 

  • Sun Y, Zhong Z, Li T, Yi L, Hu Y, Wan H et al (2017) Impact of ocean warming on tropical cyclone size and its destructiveness. Sci Rep 7(1):1–10

    ADS  Google Scholar 

  • Sooryamol K R (2020) Potential impact of climate change on surface runoff and sediment yield in a watershed of lesser Himalayas (M.Sc. Thesis, Academy of Climate Change Education and Research, Kerala Agricultural University, Vellanikkara)

    Google Scholar 

  • Sooryamol KR, Kumar S, Regina M, David Raj A (2022) Modelling climate change impact on soil erosion in a watershed of north-western lesser Himalayan region. J Sedimen Environ 7(2):125–146

    Article  Google Scholar 

  • Teng H, Liang Z, Chen S, Liu Y, Rossel RAV, Chappell A et al (2018) Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Sci Total Environ 635:673–686

    Article  ADS  CAS  Google Scholar 

  • Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems, vol 43. Secretariat of the Convention on Biological Diversity, Montreal, pp 1–67

    Google Scholar 

  • Thuiller W, Lavorel S, Araùjo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250

    Article  ADS  CAS  Google Scholar 

  • Tong S, Zhiming F, Yanzhao Y, Yumei L, Yanjuan W (2018) Research on land resource carrying capacity: progress and prospects. J Resour Ecol 9(4):331–340

    Google Scholar 

  • UAPCC (2014) Uttarakhand action plan on climate change ‘Transforming crisis into opportunity’

    Google Scholar 

  • UNCCD (1994) Elaboration of an International Convention to Combat Desertification in countries experiencing serious drought and/or desertification, particularly in Africa. A/AC.241/27

    Google Scholar 

  • UNDP (2016) Human development report 2016: human development for everyone. United Nations Development Programme (UNDP), New York, 286 pp

    Google Scholar 

  • UNEP (2008) Africa: Atlas of our changing environment. Division of Early Warning and Assessment (DEWA) United Nations Environment Programme (UNEP), Nairobi

    Google Scholar 

  • Uprety DC (2003) Rising atmospheric carbon dioxide and crops: Indian studies. Souvenir: 2nd international congress of plant physiology, New Delhi, pp 87–93

    Google Scholar 

  • Uprety DC, Dwivedi N, Jain V, Mohan R, Saxena MJ, Paswan G (2003) Response of rice cultivars to the elevated CO. Biologia Plantarum, 2 46(1):35–39

    Article  CAS  Google Scholar 

  • Vannote RL, Sweeney BW (1980) Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am Nat 115(5):667–695

    Article  Google Scholar 

  • Vass MM, Elofsson K (2016) Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050? J For Econ 24:82–105

    Google Scholar 

  • Wang H, Liu G, Li Z, Wang P, Wang Z (2018) Assessing the driving forces in vegetation dynamics using net primary productivity as the indicator: a case study in Jinghe river basin in the Loess Plateau. Forests 9(7):374

    Article  Google Scholar 

  • Waters CN, Zalasiewicz J, Summerhayes C, Barnosky AD, Poirier C, GaÅ‚uszka A et al (2016) The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351(6269):aad2622–aad2622. https://doi.org/10.1126/science

    Article  Google Scholar 

  • Wieland R, Lakes T, Yunfeng H, Nendel C (2019) Identifying drivers of land degradation in Xilingol, China, between 1975 and 2015. Land Use Policy 83:543–559

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM – a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17(2):145–157

    Article  Google Scholar 

  • Wise EK, Comrie AC (2005) Meteorologically adjusted urban air quality trends in the Southwestern United States. Atmos Environ 39(16):2969–2980

    Article  ADS  CAS  Google Scholar 

  • WMO/GWP Associate Program on Flood Management: Urban Flood Risk Management – a tool for Integrated Flood Management, 2008

    Google Scholar 

  • Wong PP, Losada IJ, Gattuso JP, Hinkel J, Khattabi A, McInnes KL et al (2014) Coastal systems and low-Lying areas. In: Field CB et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 361–409

    Google Scholar 

  • World Bank (2022) Renewable internal freshwater resources per capita (cubic meters). Available at http://data.worldbank.org/indicator/ER.H2O.INTR.PC. Accessed 22 Aug 2022

  • Xie H, Zhang Y, Wu Z, Lv T (2020) A bibliometric analysis on land degradation: current status, development, and future directions. Land 9(1):28

    Article  Google Scholar 

  • Xiong X, Grunwald S, Myers DB, Ross CW, Harris WG, Comerford NB (2014) Interaction effects of climate and land use/land cover change on soil organic carbon sequestration. Sci Total Environ 493:974–982. https://doi.org/10.1016/j.scitotenv.2014.06.088

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Mariappan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mariappan, S., David Raj, A., Kumar, S., Chatterjee, U. (2022). Global Warming Impacts on the Environment in the Last Century. In: Chatterjee, U., Akanwa, A.O., Kumar, S., Singh, S.K., Dutta Roy, A. (eds) Ecological Footprints of Climate Change . Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-15501-7_3

Download citation

Publish with us

Policies and ethics