Skip to main content

Agro-climatic Variability in Climate Change Scenario: Adaptive Approach and Sustainability

  • Chapter
  • First Online:
Ecological Footprints of Climate Change

Abstract

Agriculture is the key component to support the ever-increasing population across the globe. However, the natural resources supporting agriculture, most importantly land and water resources, are shrinking at a rapid rate. Land degradation is rampant across different parts of the world, and the vagaries of climate change threaten the agricultural production. Extreme weather events in the form of increased rainfall intensity, changes in rainfall pattern, shift in the rainfall duration, increased temperature regime and more natural calamities like flood and drought threaten agricultural production. The different agro-climatic zones (ACZs) in the country face diverse challenges due to the changing climate particularly with reference to the agriculture in the area.

Under climate change scenario, the increasing temperature is likely to reduce the C gain by majority crop plants due to increased respiration rates, which will have an adverse impact on crop yield. Thus, diversification of agriculture is necessary to sustain the production. Water management and input management through sensors or precision agriculture is an important tool to combat climate change. Reduced tillage practices, crop residue retention, biochar, land management through laser levelling, micro-irrigation systems, etc., are part of mitigation and climate-proofing strategies which have been highlighted in this chapter. Also, assessing the suitability of different crops in future climate change scenarios through crop simulation models like APSIM and DSSAT is important to know how they will fare in the future. This chapter highlights the impact of climate change on Indian agriculture in particular and the various mitigation and climate-proofing techniques adopted at different scales and how sustainable they are in the future scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shleel SM, El-Shirbeny MA (2014) GIS assessment of climate change impacts on tomato crop in Egypt. Glob J Environ Res 8(2):26–34

    Google Scholar 

  • ADB (2013) Guidelines for climate proofing investment in agriculture, rural development, and food security. ADB, pp 1–104

    Google Scholar 

  • Adler PB, Leiker J, Levine JM (2009) Direct and indirect effects of climate change on a Prairie plant community. PLoS One 4(9):e6887. https://doi.org/10.1371/journal.pone.0006887

    Article  ADS  CAS  Google Scholar 

  • Aggarwal PK (2003) Impact of climate change on Indian agriculture. J Plant Biol New Delhi 30(2):189–198

    Google Scholar 

  • Aggarwal PK, Mall R (2002) Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Clim Chang 52:331–343

    Article  Google Scholar 

  • Allen DE, Singh BP, Dalal RC (2011) Soil health indicators under climate change: a review of current knowledge. In: Singh BP et al (eds) Soil health and climate change. Springer, Berlin/Heidelberg, pp 25–45

    Chapter  Google Scholar 

  • Anonymous (2008) Geo-spatial approach in soil & climatic data analysis for agro-climatic suitability assessment of major crops in rainfed agro-ecosystem (A case study of Parts of Madhya Pradesh). M. Tech. thesis, IIRS. https://www.iirs.gov.in/iirs/sites/default/files/StudentThesis/aditi_finals_thesis.pdf

  • Aryal JP, Mehrotra MB, Jat ML, Sidhu HS (2015) Impacts of laser land levelling in rice–wheat systems of the north–western Indo-Gangetic plains of India. Food Secur 7(3):725–738. https://doi.org/10.1007/s12571-015-0460-y

    Article  Google Scholar 

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Chang Biol 17:997–1012

    Article  ADS  Google Scholar 

  • Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob Food Sec 12(1):31–37

    Article  Google Scholar 

  • Benbi DK (2012) Impact of climate change on soil health. Ann Agric Res 33(4):204–213

    Google Scholar 

  • Benbi DK (2013) Greenhouse gas emissions from agricultural soils: sources and mitigation potential. J Crop Improv 27(6):752–772

    Article  CAS  Google Scholar 

  • Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific, New York

    Book  MATH  Google Scholar 

  • Cao L, Wang Q, Deng Z, Guo X, Ma X, Ning H (2010) Effects of climate warming and drying on millet yieldin Gansu province and related countermeasures. Ying Yong Sheng Tai Xue Bao 21:2931–2937

    Google Scholar 

  • Chu JT, Xia J, Xu CY, Singh VP (2010) Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor Appl Climatol 99:149–161

    Google Scholar 

  • Coleman K, Jenkinson DS (1996) Roth C26.3 – a model for the turnover of carbon in soil. In: Datasets DS, Powlson PS, Smith JU (eds) Evaluation of soil organic matter models using existing long-term. Springer, Berlin, pp 237–246

    Chapter  Google Scholar 

  • Cook B, Smerdon JE, Seager R, Coats S (2014) Clim Dyn 43(9–10):2607. https://doi.org/10.1007/s00382-014-2075-y

    Article  Google Scholar 

  • Dai A (2011) Wiley Interdiscip Rev Clim Chang 2(1):45. https://doi.org/10.1002/wcc.81

    Article  Google Scholar 

  • Dai A (2013) Nat Clim Chang 3(1):52. https://doi.org/10.1038/nclimate1633

    Article  ADS  Google Scholar 

  • Daloz AS, Rydsaa JH, Hodnebrog O, Sillmann J, van Oort B, Mohr CW, Agrawal M, Emberson L, Stordal F, Zhang T (2021) Direct and indirect impact of climate change on wheat yield in the Indo-Gangetic plain in India. J Agric Food Res 4:100–132

    Google Scholar 

  • Dheeraj A, Nigam S, Begam S, Naha S, Jayachitra Devi S, Chaurasia HS, Kumar D, Ritika Soam SK, Srinivasa Rao N, Alka A, Sreekanth PD, Sumanth Kumar VV (2020) Role of artificial intelligence (AI) and internet of things (IoT) in mitigating climate change. In: Srinivasarao C et al (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, pp 325–358

    Google Scholar 

  • Dhyani SK, Newaj R, Sharma AR (2009) Agroforestry: its relation with agronomy, challenges and opportunities. Indian J Agron 54(3):249–266

    Google Scholar 

  • FAO (1976) Irrigation and drainage paper 46. Land and Water Development Division, FAO, Rome

    Google Scholar 

  • FAO (1984) Tillage systems for soil and water conservation. FAO Soil Bulletin 54. FAO, Rome

    Google Scholar 

  • FAO (2007) Global Administrative Unit Layers (GAUL). Available at http://www.fao.org/geonetwork/srv/en/metadata.show?id=12691&currTab=simple

  • FAO, IFAD, UNICEF, WFP and WHO (2020) In brief to the state of food security and nutrition in the world 2020. Transforming food systems for affordable healthy diets. FAO, Rome. https://doi.org/10.4060/ca9699en

    Book  Google Scholar 

  • Feroze SM, Saha B, Singh R (2016) Climate change impact on Jhum in North Eastern Himalaya: a case study of North Tripura. In: Kinhal et al (eds) Climate change combating through science and technology

    Google Scholar 

  • Fischer G, Nachtergaele FO, van Velthuizen HT, Chiozza F, Franceschini G, Henry M, Muchoney D, Tramberend S (2021) Global Agro-Ecological Zones (GAEZ v4) model documentation. FAO & IIASA, p 303

    Google Scholar 

  • Frederick KD, Major DC (1997) Climate change and water resources. Clim Chang 37(1):7–23

    Article  Google Scholar 

  • Gagnon S, Singh B, Rousselle J, Roy L (2005) An application of the statistical downscaling model (SDSM) to simulate climatic data for stream flow modelling in Québec. Can Water Resour J 30(4):297–314. https://doi.org/10.4296/cwrj3004297

    Article  Google Scholar 

  • Glotter M, Elliott J, McInerney D, Best N, Foster I, Moyer EJ (2014) Evaluating the utility of dynamical downscaling in agricultural impacts projections. Proc Natl Acad Sci 111(24):8776–8781. https://doi.org/10.1073/pnas.1314787111

    Article  ADS  CAS  Google Scholar 

  • Gobu R, Shiv A, Anilkumar C, Basavaraj PS, Harish D, Adhikari S, Ramtekey V, Hudedamani U, Mulpuri S (2020) Climate smart soil and water management strategies for sustainable agriculture. In: Srinivasarao CH et al (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, pp 49–69

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  ADS  CAS  Google Scholar 

  • Government of India (2008) National action plan on climate change. Prime Minister’s Council on Climate Change

    Google Scholar 

  • Goyal MK, Ojha CSP (2010) Robust weighted regression as a downscaling tool in temperature projections. International journal of global warming. Interscience Publishers, UK 2(3):234–251

    Google Scholar 

  • Guhathakurta P (2006) Long-range monsoon rainfall prediction of 2005 for the districts and sub-division Kerala with artificial neural network. Curr Sci 90(6):773–779

    Google Scholar 

  • Guhathakurta P, Rajeevan M (2008) Trends in rainfall pattern over India. Int J Climatol 28:1453–1469

    Article  Google Scholar 

  • Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359–373

    Article  ADS  Google Scholar 

  • Guhathakurta P, Rajeevan M, Sikka DR, Tyagi A (2015) Observed changes in southwest monsoon rainfall over India during 1901–2011. Int J Climatol 35(8):1881–1898

    Article  Google Scholar 

  • Gumbricht T, Cuesta RMR, Verchot L, Herold M, Wittman F, Householder E, Herold N, Murdiyarso D (2017) An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob Chang Biol 2:3581–3599

    Article  ADS  Google Scholar 

  • Guo D, Desmet PG, Powrie LW (2017) Impact of the future changing climate on the Southern Africa biomes and the importance of geology. J Geosci Environ Protect 5:1–9. http://www.scirp.org/journal/gep

    Article  Google Scholar 

  • Gupta A, Dhyani S, Handa AK, Newaj R, Chavan S, Alam B, Prasad R, Ram AR, Raza J, Tipathi AU, Shakhela D, Patel R, Dalvi A, Vijay Saxena A, Parihar A, Ravalan B, Sudhagar J, Gunasekaran S (2017) Estimating carbon sequestration potential of existing agroforestry systems in India. Agrofor Syst 91. https://doi.org/10.1007/s10457-016-9986-z

  • Habibullah MS, Din BH, Tan SH, Zahid H (2022) Impact of climate change on biodiversity loss: global evidence. Environ Sci Pollut Res 29(1):1073–1086

    Article  Google Scholar 

  • Hadebe S, Modi A, Mabhaudhi T (2017) Drought tolerance and water use of cereal crops: a focus on sorghum as a food security crop in sub-Saharan Africa. J Agron Crop Sci 203:177–191

    Article  CAS  Google Scholar 

  • Hahn M, Fröbe A (2010) Climate proofing for development: adapting to climate change, reducing risk. In: Climate proofing for development: adapting to climate change, reducing risk. Deutsche Gessellschaft für Technische Zusammenarbeit (GTZ), Alemania

    Google Scholar 

  • Haokip IC, Premalatha RP, Homeshwari Devi M, Chetan Jangir BH, Sunil SK, Surekha K, Srinivasa Rao C (2020) Climate change adaptation and mitigation through soil management. In: Srinivasarao C et al (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, pp 105–130

    Google Scholar 

  • Hawkesford MJ, Araus JL, Park R, Calderini D, Miralles D, Shen T, Zhang J, Parry MA (2013) Prospects of doubling global wheat yields. Food Energy Secur 2:34–48

    Article  Google Scholar 

  • http://jalshakti-dowr.gov.in/agro-climatic-zones

  • https://icar.org.in/files/state-specific/chapter/3.htm

  • https://www.adaptationcommunity.net/download/ms/mainstreaming-guides-manuals-reports/gtz-climateproofing-td-2010-en(2).pdf

  • https://www.canr.msu.edu/news/feeding-the-world-in-2050-and-beyond-part-1

  • https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf

  • https://www.fao.org/india/fao-in-india/india-at-a-glance/en/

  • https://www.fao.org/news/story/en/item/197623/icode/

  • https://www.ibef.org/industry/agriculture-india.aspx

  • https://www.worldbank.org/en/topic/agriculture/brief/food-security-and-covid-19

  • https://www.worldbank.org/en/topic/agriculture/overview#1

  • IPCC (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, 212 pp

    Google Scholar 

  • IPCC (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) Climate change 2001: the scientific basis: contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007) Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change

    Google Scholar 

  • Jones PG, Thornton PK, Giron E (2011) Web application. MarkSim GCM-A weather simulator. https://gismap.ciat.cgiar.org/MarkSimGCM

  • Kendall H, Pimentel D (1994) Constraints on the expansion of the global food supply. Ambio 23(3):198–205

    Google Scholar 

  • Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty S (2020) Assessment of climate change over the Indian region: a report of the ministry of earth sciences (MOES), government of India. Springer, p 226

    Book  Google Scholar 

  • Kumar S, Patel NR, Sarkar A, Dadhwal VK (2013a) Geospatial approach in assessing agro-climatic suitability of soybean in rainfed agro-ecosystem. Indian Soc Remote Sensing 41(3):609–618

    Article  Google Scholar 

  • Kumar V, Saharawat YS, Gathala MK, Singh A (2013b) Effect of different tillage and seeding methods on energy use efficiency and productivity of wheat in the Indo-Gangetic plains. Field Crop Res 142:1–8

    Article  Google Scholar 

  • Kumar G, Adhikary PP, Dash C (2020) Spatial extent, formation process, reclaim ability classification system and restoration strategies of gully and ravine lands in India. In: Gully erosion studies from India and surrounding regions. Springer, Cham, pp 1–20

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  ADS  CAS  Google Scholar 

  • Lal M, Singh KK, Rathore LS, Srinivasan G, Saseendran. (1998) Vulnerability of rice and wheat yields in NW India to future changes in climate. Agric For Meteorol 89(2):101–114

    Article  ADS  Google Scholar 

  • Lampayan RM, Rejesus RM, Singleton GR, Bouman BAM (2015) Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crop Res 170:95–108. https://doi.org/10.1016/j.fcr.2014.10.013

    Article  Google Scholar 

  • Leggett J, Pepper WJ, Swart RJ, Edmonds J, Filho LGM, Mintzer I, Wang MX, Watson J (1992) In: Houghton JT, Callander BA, Varney SK (eds) Emissions scenarios for the IPCC: an update. Cambridge University Press, pp 73–95

    Google Scholar 

  • Liang C, Zhu X, Fu S, Mendez A, Gasco G, Ferreiro PJ (2014) Biochar alters the resistance and resilience to drought in a tropical soil. Environ Res Lett 9(6):1–6

    Article  Google Scholar 

  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Torquebiau EF (2014) Climate-smart agriculture for food security. Nat Clim Chang 4. https://doi.org/10.1038/nclimate2437

  • Liu DL, O’Leary GJ, Christy I, Macadam B, Wang MR, Anwar AW (2017) Effects of climate downscaling methods on the assessment of climate change impacts on wheat cropping systems. Climate Change 144(4):687–701

    Article  ADS  Google Scholar 

  • Mandal SK, Maity A (2013) Precision farming for small agricultural farm: Indian scenario. Am J Exp Agric 3(1):200

    Google Scholar 

  • Mandal D, Roy T, Kumar G, Yadav D (2021) Loss of soil nutrients and financial prejudice of accelerated soil loss in India. Indian J Fertil 17(12):1286–1295

    Google Scholar 

  • Mangalassery S, Sjogersten S, Sparkes DL, Sturrock CJ, Craigon J, Mooney SJ (2014) To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci Rep 4:4586

    Article  ADS  Google Scholar 

  • Matthews R, Kropff M, Horie T, Bachelet D (1997) Simulating the impact of climate change on rice production in asia and evaluating options for adaptation. Agric Syst 54:399–425

    Article  Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC. https://www.cifor.org/knowledge/publication/1888/

    Google Scholar 

  • Modi RU, Manjunatha K, Gautam PV, Nageshkumar T, Sanodiya R, Chaudhary V, Murthy GRK, Srinivas I, Srinivasa Rao CH (2020) Climate-smart technology based farm mechanization for enhanced input use efficiency. In: Srinivasarao CH et al (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, pp 325–358

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. https://doi.org/10.1038/nature08823

    Article  ADS  CAS  Google Scholar 

  • Mrunalini K, Rolaniya LK, Datta D, Kumar S, Behera B, Makaarana G, Singh A, Prasad JVNS, Pratibha G, Naik MR, Swamy GN, Srinivasarao (2020) Resource conservation technologies for climate change adaptation and mitigation. In: Srinivasarao C et al (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, pp 131–156

    Google Scholar 

  • Mukhopadhyay D (2009) Impact of climate change on forest ecosystem and forest fire in India. In: IOP conference series. Earth and environmental science, vol 6, no 38. IOP Publishing

    Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Springer

    Book  Google Scholar 

  • Nair PR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. In: Advances in agronomy, vol 108. Academic, pp 237–307

    Google Scholar 

  • Nair PK, Viswanath S, Lubina PA (2017) Cinderella agroforestry systems. Agrofor Syst 91. https://doi.org/10.1007/s10457-016-9966-3

  • Nakicenovic N et al (2000) IPCC special report on emissions scenarios. Cambridge University Press

    Google Scholar 

  • Nath AJ, Sileshi GW, Laskar SY, Pathak K, Reang D, Nath A, Das AK (2021) Quantifying carbon stocks and sequestration potential in agroforestry systems under divergent management scenarios relevant to India’s Nationally Determined Contribution. J Clean Prod 281:124831

    Article  CAS  Google Scholar 

  • Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M (2009) Climate change: impact on agriculture and costs of adaptation, vol 21. IFPRI, Washington, DC

    Google Scholar 

  • Nema P, Nema S, Roy P (2012) An overview of global climate changing in current scenario and mitigation action. Renew Sust Energ Rev 16(4):2329–2336

    Article  Google Scholar 

  • Niklaus PA, Falloon P (2006) Estimating soil carbon sequestration under elevated CO2 by combining carbon isotope labelling with soil carbon cycle modelling. Glob Chang Biol 12:1909–1921

    Article  ADS  Google Scholar 

  • O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, Mathur R, van Vuuren DP (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Chang 122:387–400. https://doi.org/10.1007/s10584-013-0905-2

    Article  ADS  Google Scholar 

  • O’Gorman PA, Dwyer JG (2018) Using machine learning to parameterize moist convection: potential for modeling of climate, climate change, and extreme events. J Adv Model Earth Syst 10(10):2548–2563

    Article  Google Scholar 

  • Olaya AMS, Cerri CEP, Scala NL, Dias CTS, Cerri CC (2013) Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Environ Res Lett 8:1–8

    Google Scholar 

  • Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (2007) Contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Pathak H, Ladha, Aggarwal PK, Peng S, Das S, Singh Y, Singh B, Kamra SK, Mishra B, Sastri ASRAS, Aggarwal HP, Das DK, Gupta RK (2003) Trends of climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic Plains. Field Crop Res 80:223–234

    Article  Google Scholar 

  • Polade SD, Gershunov A, Cayan DR, Dettinger M, Pierce DW (2017) Sci Rep 7:10783. https://doi.org/10.1038/s41598-017-11285-y

    Article  ADS  CAS  Google Scholar 

  • Post WM, Pastor J, Zinke PJ, Strangenberger AG (1985) Global patterns of soil nitrogen. Nature 317:613–616

    Article  ADS  Google Scholar 

  • Pratibha G, Srinivas I, Rao KV, Shanker AK, Raju BMK, Choudhary DK, Srinivasrao K, Srinivasarao CH, Maheswari M (2016) Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semiarid tropics of India. Atmos Environ 145:239–250

    Article  ADS  CAS  Google Scholar 

  • Raes D (2005) BUDGET – a soil water and salt balance model. In Reference Manual Version 6.0. http://www.iupware.be

  • Rajeshwar Rao G, Prabhakar M, Venkatesh G, Srinivas I, Sammi Reddy K (2018) Agroforestry opportunities for enhancing resilience to climate change in rainfed areas. ICAR—Central Research Institute for Dryland Agriculture, Hyderabad

    Google Scholar 

  • Rajput J, Kushwaha NL, Blessy VA, Nivesh S, Paramaguru PK, Rao KV, Kumar M, Srinivasa Rao C (2020) Climate smart soil and water management strategies for sustainable agriculture. In: Srinivasarao C et al (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, pp 157–182

    Google Scholar 

  • Rao AR, Hamed KH, Chen HL (2003) Non-stationarities in hydrologic and environmental time series. Springer, Dordrecht

    Google Scholar 

  • Rasul G, Hussain A, Mahapatra B, Dangol N (2018) Food and nutrition security in the Hindu Kush Himalayanregion. J Sci Food Agric 98:429–438

    Article  CAS  Google Scholar 

  • Rejani R, Rao KV, Osman M, Chary GR, Pushpanjali, Sammi Reddy K, Srinivasarao CH (2015) Location specific in-situ soil and water conservation interventions for sustainable management of drylands. J Agrometeorol 17(1):55–60

    Article  Google Scholar 

  • Rinawati F, Stein K, Lindner A (2013) Climate change impacts on biodiversity – the setting of a lingering global crisis. Diversity 5:114–123. https://doi.org/10.3390/d5010114

    Article  Google Scholar 

  • Rosenzweig C, Iglesius A, Yang XB, Epstein PR, Chivian E (2001) Climate change and extreme weather events – implications for food production, plant diseases, and pests. Glob Change Human Health 2:90–104

    Article  Google Scholar 

  • Roy T, Kalambukattu JG (2020) Precision farming: a step towards sustainable, climate-smart agriculture. In: Venkatramanan V, Shah S, Prasad R (eds) Global climate change: resilient and smart agriculture. Springer, Singapore

    Google Scholar 

  • Roy T, Kumar S, Chand L, Kadam DM, Bihari B, Shrimali SS, Bishnoi R, Maurya UK, Singh M, Muruganandam M, Singh L (2019) Impact of Pusa hydrogel application on yield and productivity of rainfed wheat in North West Himalayan region. Curr Sci 116(7):00113891

    Article  Google Scholar 

  • Samra JS, Singh G (2004) Heat wave of March 2004: impact on agriculture. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Seager R, Ting M, Li C, Naik N, Cook B, Nakamura J, Liu H (2013) Nat Clim Chang 3:482. https://doi.org/10.1038/nclimate1787

    Article  ADS  Google Scholar 

  • Seager R, Liu H, Henderson N, Simpson I, Kelley C, Shaw T, Kushnir Y, Ting M (2014) J Clim 27(12):4655. https://doi.org/10.1175/JCLI-D-13-00446.1

    Article  ADS  Google Scholar 

  • Seif-Ennasr M, Bouchaou L, El Morjani Z, Hirich A, Beraaouz E, Choukr-Allah R (2020) GIS-based land suitability and crop vulnerability assessment under climate change in Chtouka Ait Baha, Morocco. Atmosfera 11:1167. https://doi.org/10.3390/atmos11111167

    Article  ADS  Google Scholar 

  • Sekar I, Pal S (2012) Rice and wheat crop productivity in the Indo-Gangetic Plains of India: changing pattern of growth and future strategies. Indian J Agric Econ 67:902-2016-67295

    Google Scholar 

  • Sharma KL, Grace JK, Mandal UK, Gajbhiye PN, Srinivas K, Korwar GR, Bindu VH, Ramesh V, Ramachandran K, Yadav SK (2008) Evaluation of long-term soil management practices using key indicators and soil quality indices in a semiarid tropical Alfisol. Aust J Soil Res 46:368–377

    Article  CAS  Google Scholar 

  • Singh P, Boote K, Kadiyala M, Nedumaran S, Gupta S, Srinivas K, Bantilan M (2017) An assessment of yield gains under climate change due to genetic modification of pearl millet. Sci Total Environ 601:1226–1237

    Article  ADS  Google Scholar 

  • Six J, Ogle SM, Jay Breidt F, Conant RT, Mosier AR, Paustian K (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob Chang Biol 10(2):155–160. https://doi.org/10.1111/j.1529-8817.2003.00730.x

    Article  ADS  Google Scholar 

  • Solomon S (2007) Climate change 2007 – the physical science basis: working group I contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  • Srinivasarao C, Rani YS, Veni VG, Sharma KL, Sankar GM, Prasad JVNS, Prasad YG, Sahrawat KL (2016) Assessing village-level carbon balance due to greenhouse gas mitigation interventions using EX-ACT model. Int J Environ Sci Technol 13(1):97–112

    Article  CAS  Google Scholar 

  • Srinivasarao C, Rao KV, Gopinath KA, Prasad YG, Arunachalam A, Ramana DBV, Ravindra Chary G, Gangaiah B, Venkateswarlu B, Mohapatra T (2020) Agriculture contingency plans for managing weather aberrations and extreme climatic events: development, implementation and impacts in India. Adv Agron 159. https://doi.org/10.1016/bs.agron.2019.08.002

  • Stafford Smith DM, Horrocks L, Harvey A, Hamilton C (2010) Rethinking adaptation for a four degree world. Phil Trans R Soc A 369(1934):196

    Article  ADS  Google Scholar 

  • Suresh Ramanan S, Soam SK, Srinivasa Rao C (2020) Can planting trees avert climate emergency? In: Srinivasarao C et al (eds) Climate change and Indian agriculture: challenges and adaptation strategies. ICAR-National Academy of Agricultural Research Management, Hyderabad, pp 183–197

    Google Scholar 

  • Thadani R, Singh V, Chauhan DS, Dwivedi V, Pandey A (2015) Climate change in Uttarakhand. Singh V. 2015 Bishen Singh Mahendra Pal Singh, Dehradun

    Google Scholar 

  • Upadhyay H, Vinke K, Bhardwaj S, Becker M, Irfan M, George NB, Biella R, Arumugam P, Murki SK, Paoletti E (2021) Locked houses, fallow lands: climate change and migration in Uttarakhand, India. Potsdam Institute for Climate Impact Research (PIK), Potsdam and The Energy and Resources Institute (Teri), New Delhi

    Google Scholar 

  • Venkatesh G, Srinivasarao C, Gopinath KA, Reddy SK (2015) Low-cost portable kiln for biochar production from on-farm crop residue. Indian Farming 64(12):9–12

    Google Scholar 

  • Wang J (2012) Modelling and simulation of plant breeding strategies. In: Abdurakhmonov I (ed) Plant breeding. InTech Press, p 19

    Google Scholar 

  • Wang J, Vanga SK, Saxena R, Orsat V, Raghavan V (2018) Effect of climate change on the yield of cereal crops: a review. Climate 6(2):41

    Article  Google Scholar 

  • Welch JR, Vincent JR, Auffhammer M, Moya PF, Dobermann A, Dawe D (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc Natl Acad Sci U S A 107:14562–14567

    Article  ADS  CAS  Google Scholar 

  • Wilby RL (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC Task Group on Data and Scenario Support for Impact and Climate Analysis (TGICA)

    Google Scholar 

  • WWF (World Wild life Fund) (2020) Living planet report 2020: bending the curve of biodiversity loss. LPR 2020 Full report.pdf

    Google Scholar 

  • WWF (World Wildlife Fund) (2016) Living planet report 2016: risk and resilience in a new era. WWF International, Switzerland. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjSr_2X-aPrAhW8IbcAHRWXDvUQFjAAegQIBRAB&url=https%3A2F%2Fawsassets.panda.org%2Fdownloads%2Flpr_2016_full_report_low_res.pdf&usg=AOvVaw2JmRg9VlAX_cKy_Svx6Mwu

  • Yadav RP, Panday SC, Kumar J, Bisht JK, Meena VS, Choudhary M, Nath S, Parihar M, Meena RP (2020) Climatic variation and its impacts on yield and water requirement of crops in Indian Central Himalaya. In: Agrometeorology. IntechOpen

    Google Scholar 

  • You L, Rosegrant MW, Wood S, Sun D (2009) Impact of growing season temperature on wheat productivity in China. Agric For Meteorol 149:1009–1014

    Article  ADS  Google Scholar 

  • Zhao X, Fitzgerald M (2013) Climate change: implications for the yield of edible rice. PLoS One 8:e66218

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin George Kalambukattu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy, T., Kalambukattu, J.G., Biswas, S.S., Kumar, S. (2022). Agro-climatic Variability in Climate Change Scenario: Adaptive Approach and Sustainability. In: Chatterjee, U., Akanwa, A.O., Kumar, S., Singh, S.K., Dutta Roy, A. (eds) Ecological Footprints of Climate Change . Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-031-15501-7_12

Download citation

Publish with us

Policies and ethics