Skip to main content

Reproductive Changes from Puberty to Menopause and the Effects of the Menstrual Cycle on Bone Formation and Bone Loss

  • Chapter
  • First Online:
The Active Female

Abstract

During the lifespan of women, there are dramatic transitions associated with the beginning and cessation of reproductive function. These transitions, puberty and menopause, result in dramatic changes in the anatomy, physiology, and cognitive function in females and are caused by fluctuating levels of estrogen and progesterone. Regular menstruation is the result of cyclic release of reproductive hormones and is a sign that the reproductive system is functioning optimally. The menstrual cycle has vast implications on the building, maintenance, and break down of skeletal bone in women. Due to the fluctuating level of female hormones, the menstrual cycle plays a distinctive role during various times of the month which in turn affects bone health. Estrogen is a crucial hormone for bone turnover/remodeling which, when released, provides a protective mechanism against the process of natural bone loss due to aging. Acquiring a high amount of peak bone mass during adolescence helps to protect the female against rapid degradation of bone due to the decline of estrogen around menopause. Therefore, taking appropriate steps years before and after menopause is crucial in order to preserve bone mass in females.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDowell MA, Brody DJ, Hughes JP. Has age at menarche changed? Results from the National Health and Nutrition Examination Survey (NHANES) 1999-2004. J Adolesc Health. 2007;40(3):227–31.

    PubMed  Google Scholar 

  2. Gold EB. The timing of the age at which natural menopause occurs. Obstet Gynecol Clin N Am. 2011;38(3):425–40.

    Google Scholar 

  3. Medford A, Vaupel JW. Human lifespan records are not remarkable but their durations are. PLoS One. 2019;14(3):e0212345.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Perez-Lopez FR, Chedraui P, Cuadros-Lopez JL. Bone mass gain during puberty and adolescence: deconstructing gender characteristics. Curr Med Chem. 2010;17(5):453–66.

    CAS  PubMed  Google Scholar 

  5. Clarke BL, Khosla S. Female reproductive system and bone. Arch Biochem Biophys. 2010;503(1):118–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuiri-Hanninen T, Kallio S, Seuri R, Tyrvainen E, Liakka A, Tapanainen J, et al. Postnatal developmental changes in the pituitary-ovarian axis in preterm and term infant girls. J Clin Endocrinol Metab. 2011;96(11):3432–9.

    CAS  PubMed  Google Scholar 

  7. Kuiri-Hanninen T, Haanpaa M, Turpeinen U, Hamalainen E, Seuri R, Tyrvainen E, et al. Postnatal ovarian activation has effects in estrogen target tissues in infant girls. J Clin Endocrinol Metab. 2013;98(12):4709–16.

    CAS  PubMed  Google Scholar 

  8. Kuiri-Hanninen T, Dunkel L, Sankilampi U. Sexual dimorphism in postnatal gonadotrophin levels in infancy reflects diverse maturation of the ovarian and testicular hormone synthesis. Clin Endocrinol. 2018;89(1):85–92.

    Google Scholar 

  9. Sultan C, Gaspari L, Maimoun L, Kalfa N, Paris F. Disorders of puberty. Best Pract Res Clin Obstet Gynaecol. 2018;48:62–89.

    PubMed  Google Scholar 

  10. Uenoyama Y, Tsukamura H, Maeda K. KNDy neuron as a gatekeeper of puberty onset. J Obstet Gynaecol Res. 2014;40(6):1518–26.

    PubMed  Google Scholar 

  11. Kota AS, Ejaz S. Precocious puberty. StatPearls. Treasure Island, FL: StatPearls Publishing LLC; 2019.

    Google Scholar 

  12. Long D. Precocious Puberty. Pediatr Rev. 2015;36(7):319–21.

    PubMed  Google Scholar 

  13. Brito VN, Latronico AC. Puberty: when is it normal? Arch Endocrinol Metab. 2015;59(2):93–4.

    PubMed  Google Scholar 

  14. Chemaitilly W, Escobar O, Witchel S. Endocrinology: pubertal development. In: Zitelli BG, McIntire S, Nowalk AJ, editors. Atlas of pediatric physical diagnosis. Philadelphia, PA: Elsevier Saunders; 2012. p. 370–4.

    Google Scholar 

  15. Leka-Emiri S, Chrousos GP, Kanaka-Gantenbein C. The mystery of puberty initiation: genetics and epigenetics of idiopathic central precocious puberty (ICPP). J Endocrinol Investig. 2017;40(8):789–802.

    CAS  Google Scholar 

  16. Poursafa P, Ataei E, Kelishadi R. A systematic review on the effects of environmental exposure to some organohalogens and phthalates on early puberty. J Res Med Sci. 2015;20(6):613–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, Sulem P, et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat Genet. 2017;49(6):834–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson CA, Duffy DL, Martin NG, Visscher PM. Estimation of variance components for age at menarche in twin families. Behav Genet. 2007;37(5):668–77.

    PubMed  Google Scholar 

  19. Kaprio J, Rimpela A, Winter T, Viken RJ, Rimpela M, Rose RJ. Common geneticinfluences on BMI and age at menarche. Hum Biol. 1995;67(5):739–53.

    CAS  PubMed  Google Scholar 

  20. Morris DH, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. Familial concordance for age at menarche: analyses from the Breakthrough Generations Study. Paediatr Perinat Epidemiol. 2011;25(3):306–11.

    PubMed  Google Scholar 

  21. Roa J, Garcia-Galiano D, Castellano JM, Gaytan F, Pinilla L, Tena-Sempere M. Metabolic control of puberty onset: new players, new mechanisms. Mol Cell Endocrinol. 2010;324(1–2):87–94.

    CAS  PubMed  Google Scholar 

  22. Castellano JM, Tena-Sempere M. Metabolic control of female puberty: potential therapeutic targets. Expert Opin Ther Targets. 2016;20(10):1181–93.

    CAS  PubMed  Google Scholar 

  23. Lazzeri G, Tosti C, Pammolli A, Troiano G, Vieno A, Canale N, et al. Overweight and lower age at menarche: evidence from the Italian HBSC cross-sectional survey. BMC Womens Health. 2018;18(1):168.

    PubMed  PubMed Central  Google Scholar 

  24. Biro FM, Pajak A, Wolff MS, Pinney SM, Windham GC, Galvez MP, et al. Age of Menarche in a Longitudinal US Cohort. J Pediatr Adolesc Gynecol. 2018;31(4):339–45.

    PubMed  PubMed Central  Google Scholar 

  25. Kaplowitz PB. Link between body fat and the timing of puberty. Pediatrics. 2008;121(Suppl 3):S208–17.

    PubMed  Google Scholar 

  26. de Muinich Keizer SM, Mul D. Trends in pubertal development in Europe. Hum Reprod Update. 2001;7(3):287–91.

    PubMed  Google Scholar 

  27. Herman-Giddens ME. The decline in the age of menarche in the United States: should we be concerned? J Adolesc Health. 2007;40(3):201–3.

    PubMed  Google Scholar 

  28. Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24(5):668–93.

    PubMed  Google Scholar 

  29. Currie C, Ahluwalia N, Godeau E, Nic Gabhainn S, Due P, Currie DB. Is obesity at individual and national level associated with lower age at menarche? Evidence from 34 countries in the Health Behaviour in School-aged Children Study. J Adolesc Health. 2012;50(6):621–6.

    PubMed  Google Scholar 

  30. Georgopoulos N, Markou K, Theodoropoulou A, Paraskevopoulou P, Varaki L, Kazantzi Z, et al. Growth and pubertal development in elite female rhythmic gymnasts. J Clin Endocrinol Metab. 1999;84(12):4525–30.

    CAS  PubMed  Google Scholar 

  31. Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13(3):500–7.

    CAS  PubMed  Google Scholar 

  32. Valentino R, Savastano S, Tommaselli AP, D’Amore G, Dorato M, Lombardi G. The influence of intense ballet training on trabecular bone mass, hormone status, and gonadotropin structure in young women. J Clin Endocrinol Metab. 2001;86(10):4674–8.

    CAS  PubMed  Google Scholar 

  33. Calthorpe L, Brage S, Ong KK. Systematic review and meta-analysis of the association between childhood physical activity and age at menarche. Acta Paediatr. 2019;108(6):1008–15.

    PubMed  PubMed Central  Google Scholar 

  34. Georgopoulos NA, Markou K, Theodoropoulou A. Height velocity and skeletal maturation in elite female rhythmic gymnasts. J Clin Endocrinol Metab. 2001;86:5159–64.

    CAS  PubMed  Google Scholar 

  35. Bonen A. Recreational exercise does not impair menstrual cycles: a prospective study. Int J Sports Med. 1992;13:110–20.

    CAS  PubMed  Google Scholar 

  36. Kaplowitz P, Bloch C. Evaluation and Referral of Children With Signs of Early Puberty. Pediatrics. 2016;137(1)

    Google Scholar 

  37. Abitbol L, Zborovski S, Palmert MR. Evaluation of delayed puberty: what diagnostic tests should be performed in the seemingly otherwise well adolescent? Arch Dis Child. 2016;101(8):767–71.

    PubMed  Google Scholar 

  38. Norman R. Reproductive changes in the female lifespan. In: Robert-McComb J, Norman R, Zumwalt M, editors. The active female: health issues throughout the female lifespan. 2nd ed. New York, NY: Springer Science + Business Media; 2014. p. 25–31.

    Google Scholar 

  39. Ecochard R, Gougeon A. Side of ovulation and cycle characteristics in normally fertile women. Hum Reprod. 2000;15(4):752–5.

    CAS  PubMed  Google Scholar 

  40. Bakos O, Lundkvist O, Wide L, Bergh T. Ultrasonographical and hormonal description of the normal ovulatory menstrual cycle. Acta Obstet Gynecol Scand. 1994;73(10):790–6.

    CAS  PubMed  Google Scholar 

  41. Harlow SD. Menstruation and menstrual disorders: the epidemiology of menstruation and menstrual dysfunction. In: Goldman M, Hatch M, editors. Women and Health. San Diego, CA: Academic Press; 2000. p. 99–113.

    Google Scholar 

  42. Waller K, Swan SH, Windham GC, Fenster L, Elkin EP, Lasley BL. Use of urine biomarkers to evaluate menstrual function in healthy premenopausal women. Am J Epidemiol. 1998;147(11):1071–80.

    CAS  PubMed  Google Scholar 

  43. Mallinson RJ, De Souza MJ. Current perspectives on the etiology and manifestation of the "silent" component of the Female Athlete Triad. Int J Women's Health. 2014;6:451–67.

    Google Scholar 

  44. van Santbrink EJ, Hop WC, van Dessel TJ, de Jong FH, Fauser BC. Decremental follicle-stimulating hormone and dominant follicle development during the normal menstrual cycle. Fertil Steril. 1995;64(1):37–43.

    PubMed  Google Scholar 

  45. Fritz MA, Speroff L. Regulation of the menstrual cycle. In: Fritz MA, Speroff L, editors. 8. Philadelphia, PA: Lippincott Williams & Wilkins; 2011. p. 199–242.

    Google Scholar 

  46. Khan-Dawood FS, Goldsmith LT, Weiss G, Dawood MY. Human corpus luteum secretion of relaxin, oxytocin, and progesterone. J Clin Endocrinol Metab. 1989;68(3):627–31.

    CAS  PubMed  Google Scholar 

  47. Zumwalt M, Dowling B. Effects of the menstrual cycle on the acquisition of peak bone mass. In: Robert-McComb J, Norman R, Zumwalt M, editors. The active female: health issues through the lifespan. 2nd ed. New York, NY: Springer Science + Business Media; 2014.

    Google Scholar 

  48. McNeilly AS. Lactational amenorrhea. Endocrinol Metab Clin N Am. 1993;22(1):59–73.

    CAS  Google Scholar 

  49. McNeilly AS. Lactational control of reproduction. Reprod Fertil Dev. 2001;13(7–8):583–90.

    CAS  PubMed  Google Scholar 

  50. Stern JM, Konner M, Herman TN, Reichlin S. Nursing behaviour, prolactin and postpartum amenorrhoea during prolonged lactation in American and !Kung mothers. Clin Endocrinol. 1986;25(3):247–58.

    CAS  Google Scholar 

  51. Labbok MH, Hight-Laukaran V, Peterson AE, Fletcher V, von Hertzen H, Van Look PF. Multicenter study of the Lactational Amenorrhea Method (LAM): I. Efficacy, duration, and implications for clinical application. Contraception. 1997;55(6):327–36.

    CAS  PubMed  Google Scholar 

  52. Amenorrhea. https://www.hormone.org/diseases-and-conditions/amenorrhea: Hormone Health Network; 2017.

  53. Nichols JF, Rauh MJ, Lawson MJ, Ji M, Barkai HS. Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med. 2006;160(2):137–42.

    PubMed  Google Scholar 

  54. Nichols JF, Rauh MJ, Barrack MT, Barkai HS, Pernick Y. Disordered eating and menstrual irregularity in high school athletes in lean-build and nonlean-build sports. Int J Sport Nutr Exerc Metab. 2007;17(4):364–77.

    PubMed  Google Scholar 

  55. Beals KA, Manore MM. Disorders of the female athlete triad among collegiate athletes. Int J Sport Nutr Exerc Metab. 2002;12(3):281–93.

    PubMed  Google Scholar 

  56. Hoch AZ, Pajewski NM, Moraski L, Carrera GF, Wilson CR, Hoffmann RG, et al. Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med. 2009;19(5):421–8.

    PubMed  PubMed Central  Google Scholar 

  57. Beals KA, Hill AK. The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J Sport Nutr Exerc Metab. 2006;16(1):1–23.

    PubMed  Google Scholar 

  58. Sanborn CF, Martin BJ, Wagner WW Jr. Is athletic amenorrhea specific to runners? Am J Obstet Gynecol. 1982;143(8):859–61.

    CAS  PubMed  Google Scholar 

  59. Cho GJ, Han SW, Shin JH, Kim T. Effects of intensive training on menstrual function and certain serum hormones and peptides related to the female reproductive system. Medicine. 2017;96(21):e6876.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. American College of Sports Medicine: American College of Sports Medicine position stand. The female athlere triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    PubMed  Google Scholar 

  61. De Souza MJ, Koltun KJ, Strock N, C.A., Williams NI. Rethinking the concept of an energy availability threshold and its role in the Female Athlete Triad. Curr Opin Physiol. 2019;10:34–42.

    Google Scholar 

  62. Lieberman JL, De Souza MJ, Wagstaff DA, Williams NI. Menstrual disruption with exercise is not linked to an energy availability threshold. Med Sci Sports Exerc. 2018;50(3):551–61.

    PubMed  PubMed Central  Google Scholar 

  63. Loucks AB, Verdun M, Heath EM. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol (1985). 1998;84(1):37–46.

    Google Scholar 

  64. Loucks AB. The response of luteinizing hormone pulsatility to five days of low energy availability disappears by 14 years of gynecological age. J Clin Endocrinol Metab. 2006;91:3158–64.

    CAS  PubMed  Google Scholar 

  65. Loucks AB, Thuma JR. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J Clin Endocrinol Metab. 2003;88(1):297–311.

    CAS  PubMed  Google Scholar 

  66. Brewer CJ, Balen AH. The adverse effects of obesity on conception and implantation. Reproduction. 2010;140(3):347–64.

    CAS  PubMed  Google Scholar 

  67. Butzow T, Lehtovirta M, Siegberg R, Hovatta O, Koistinen R, Seppala M, et al. The decrease in luteinizing hormone secretion in response to weight reduction is inversely related to the severity of insulin resistance in overweight women. J Clin Endocrinol Metab. 2000;85:3271–5.

    CAS  PubMed  Google Scholar 

  68. Yeager K, Agostini R, Nattiv A, Drinkwater BL. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc 1993;25(7):775–7.

    Google Scholar 

  69. Thein-Nissenbaum JM, Rauh MJ, Carr KE, Loud KJ, McGuine TA. Associations between disordered eating, menstrual dysfunction, and musculoskeletal knjury among high school athletes. J Orthop Sports Phys Ther. 2011;41(2):60–9.

    PubMed  Google Scholar 

  70. Burger HG, Hale GE, Robertson DM, Dennerstein L. A review of hormonal changes during the menopausal transition: focus on findings from the Melbourne Women’s Midlife Health Project. Hum Reprod Update. 2007;13(6):559–65.

    CAS  PubMed  Google Scholar 

  71. Prior JC, Hitchcock CL. The endocrinology of perimenopause: need for a paradigm shift. Front Biosci (Schol Ed). 2011;3:474–86.

    PubMed  Google Scholar 

  72. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, et al. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol Metab. 2012;97(4):1159–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Stricker R, Eberhart R, Chevailler MC, Quinn FA, Bischof P, Stricker R. Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer. Clin Chem Lab Med. 2006;44(7):883–7.

    CAS  PubMed  Google Scholar 

  74. Ali SB, Belfki-Benali H, Ahmed DB, Haddad N, Jmal A, Abdennebi M, et al. Postmenopausal hypertension, abdominal obesity, apolipoprotein and insulin resistance. Clin Exp Hypertens. 2016;38(4):370–4.

    PubMed  Google Scholar 

  75. Thurston RC. Vasomotor symptoms: natural history, physiology, and links with cardiovascular health. Climacteric. 2018;21(2):96–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tremollieres FA, Pouilles JM, Ribot CA. Relative influence of age and menopause on total and regional body composition changes in postmenopausal women. Am J Obstet Gynecol. 1996;175(6):1594–600.

    CAS  PubMed  Google Scholar 

  77. Boschitsch EP, Durchschlag E, Dimai HP. Age-related prevalence of osteoporosis and fragility fractures: real-world data from an Austrian Menopause and Osteoporosis Clinic. Climacteric. 2017;20(2):157–63.

    CAS  PubMed  Google Scholar 

  78. Woods NF, Mitchell ES. Symptoms during the perimenopause: prevalence, severity, trajectory, and significance in women’s lives. Am J Med. 2005;118(Suppl 12B):14–24.

    PubMed  Google Scholar 

  79. Williamson S, Landeiro F, McConnell T, Fulford-Smith L, Javaid MK, Judge A, et al. Costs of fragility hip fractures globally: a systematic review and meta-regression analysis. Osteoporos Int. 2017;28(10):2791–800.

    CAS  PubMed  Google Scholar 

  80. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet (London, England). 2002;359(9319):1761–7.

    PubMed  Google Scholar 

  81. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.

    CAS  PubMed  Google Scholar 

  82. Murphy CC, Bartholomew LK, Carpentier MY, Bluethmann SM, Vernon SW. Adherence to adjuvant hormonal therapy among breast cancer survivors in clinical practice: a systematic review. Breast Cancer Res Treat. 2012;134(2):459–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Manson JE, Hsia J, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003;349(6):523–34.

    CAS  PubMed  Google Scholar 

  84. Miller VM, Harman SM. An update on hormone therapy in postmenopausal women: mini-review for the basic scientist. Am J Physiol Heart Circ Physiol. 2017;313(5):H1013–h21.

    PubMed  PubMed Central  Google Scholar 

  85. Kobayashi S, Takahashi HE, Ito A, Saito N, Nawata M, Horiuchi H, et al. Trabecular minimodeling in human iliac bone. Bone. 2003;32(2):163–9.

    CAS  PubMed  Google Scholar 

  86. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6:121–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ross AC, Taylor CL, A.L Y. Overview of Calcium. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Calcium and Vitamin D. Washington DC: National Academies Press (US); 2011.

    Google Scholar 

  88. Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev. 1997;18(6):832–72.

    CAS  PubMed  Google Scholar 

  89. Kovacs CS. Calcium and bone metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 2005;10(2):105–18.

    PubMed  Google Scholar 

  90. Aloia JF, Chen DG, Yeh JK, Chen H. Serum vitamin D metabolites and intestinal calcium absorption efficiency in women. Am J Clin Nutr. 2010;92(4):835–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Nordin BE, Need AG, Morris HA, O’Loughlin PD, Horowitz M. Effect of age on calcium absorption in postmenopausal women. Am J Clin Nutr. 2004;80(4):998–1002.

    CAS  PubMed  Google Scholar 

  92. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4.

    CAS  PubMed  Google Scholar 

  93. Xiong J, O’Brien CA. Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res. 2012;27(3):499–505.

    CAS  PubMed  Google Scholar 

  94. Marques EA, Mota J, Viana JL, Tuna D, Figueiredo P, Guimaraes JT, et al. Response of bone mineral density, inflammatory cytokines, and biochemical bone markers to a 32-week combined loading exercise programme in older men and women. Arch Gerontol Geriatr. 2013;57(2):226–33.

    CAS  PubMed  Google Scholar 

  95. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11(3):337–49.

    CAS  PubMed  Google Scholar 

  96. Souza PP, Lerner UH. The role of cytokines in inflammatory bone loss. Immunol Investig. 2013;42(7):555–622.

    CAS  Google Scholar 

  97. Schett G. Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Investig. 2011;41(12):1361–6.

    CAS  Google Scholar 

  98. Mödder UI, Roforth MM, Hoey K, McCready LK, Peterson JM, Monroe DG, et al. Effects of estrogen on osteoprogenitor cells and cytokines/bone-regulatory factors in postmenopausal women. Bone. 2011;49(2):202–7.

    PubMed  PubMed Central  Google Scholar 

  99. Manolagas SC. Steroids and osteoporosis: the quest for mechanisms. J Clin Invest. 2013;123(5):1919–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Colaianni G, Cuscito C, Colucci S. FSH and TSH in the regulation of bone mass: the pituitary/immune/bone axis. Clin Dev Immunol. 2013;2013:382698.

    PubMed  PubMed Central  Google Scholar 

  101. Chen Q, Kaji H, Kanatani M, Sugimoto T, Chihara K. Testosterone increases osteoprotegerin mRNA expression in mouse osteoblast cells. Horm Metab Res. 2004;36(10):674–8.

    CAS  PubMed  Google Scholar 

  102. Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging. 2016;11:1317–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Monson JP, Drake WM, Carroll PV, Weaver JU, Rodriguez-Arnao J, Savage MO. Influence of growth hormone on accretion of bone mass. Horm Res. 2002;58(Suppl 1):52–6.

    CAS  PubMed  Google Scholar 

  104. Baroncelli GI, Bertelloni S, Sodini F, Saggese G. Acquisition of bone mass in normal individuals and in patients with growth hormone deficiency. J Pediatr Endocrinol Metab. 2003;16(Suppl 2):327–35.

    PubMed  Google Scholar 

  105. Condamine L, Menaa C, Vrtovsnik F, Friedlander G, Garabedian M. Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J Clin Invest. 1994;94(4):1673–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Menaa C, Vrtovsnik F, Friedlander G, Corvol M, Garabedian M. Insulin-like growth factor I, a unique calcium-dependent stimulator of 1,25-dihydroxyvitamin D3 production. Studies in cultured mouse kidney cells. J Biol Chem. 1995;270(43):25461–7.

    CAS  PubMed  Google Scholar 

  107. Caverzasio J, Montessuit C, Bonjour JP. Stimulatory effect of insulin-like growth factor-1 on renal Pi transport and plasma 1,25-dihydroxyvitamin D3. Endocrinology. 1990;127(1):453–9.

    CAS  PubMed  Google Scholar 

  108. Nilsson O, Chrysis D, Pajulo O, Boman A, Holst M, Rubinstein J, et al. Localization of estrogen receptors-alpha and -beta and androgen receptor in the human growth plate at different pubertal stages. J Endocrinol. 2003;177(2):319–26.

    CAS  PubMed  Google Scholar 

  109. Chagin AS, Savendahl L. Oestrogen receptors and linear bone growth. Acta Paediatr. 2007;96(9):1275–9.

    PubMed  Google Scholar 

  110. Borjesson AE, Lagerquist MK, Windahl SH, Ohlsson C. The role of estrogen receptor alpha in the regulation of bone and growth plate cartilage. Cell Mol Life Sci. 2013;70(21):4023–37.

    CAS  PubMed  Google Scholar 

  111. Weise M, De-Levi S, Barnes KM, Gafni RI, Abad V, Baron J. Effects of estrogen on growth plate senescence and epiphyseal fusion. Proc Natl Acad Sci U S A. 2001;98(12):6871–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23(11):576–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lane JM, Russell L, Khan SN. Osteoporosis. Clin Orthop Relat Res. 2000;372:139–50.

    Google Scholar 

  114. Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. Peak bone mass and its regulation. In: Glorieux FH, Pettifor FM, Jüppner H, editors. Pediatric Bone. 2nd ed. Amsterdam, The Netherlands: Elsevier; 2012. p. 189–221.

    Google Scholar 

  115. Teegarden D, Proulx WR, Martin BR, Zhao J, McCabe GP, Lyle RM, et al. Peak bone mass in young women. J Bone Miner Res. 1996;10:711–5.

    Google Scholar 

  116. Optimal calcium intake. NIH Consens Statement. 1994;12(4):1–31.

    Google Scholar 

  117. Erickson SM, Sevier TL. Osteoporosis in active women: prevention, diagnosis, and treatment. Phys Sportsmed. 1997;25(11):61–72.

    CAS  PubMed  Google Scholar 

  118. Theodorou S, Theodorou S, Sartoris D. Osteoporosis: a global assessment of clinical and imaging features. Orthopaedics. 2005;28(11):1346–53.

    Google Scholar 

  119. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group Osteoporos Int. 1994;4(6):368–81.

    CAS  Google Scholar 

  120. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S. Gene-environment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci. 2007;51:64–80.

    PubMed  Google Scholar 

  121. Bouxsein ML, Marcus R. Overview of exercise and bone mass. Rheum Dis Clin N Am. 1994;20(787–801)

    Google Scholar 

  122. Düppe H, Gärdsel P, Johnel O, Nilsson BE, Ringsberg K. Bone mineral density, muscle strength and physical activity. Acta Orthop Scand. 1997;68:97–103.

    PubMed  Google Scholar 

  123. Kohrt WA, Ehsani AA, Birge J. Effects of exercise involving predominantly either joint-reaction forces on bone mineral density in older women. Bone. 1997;12:1253–61.

    CAS  Google Scholar 

  124. Grimston SK, Willows ND, Hanley DA. Mechanical loading regime and its relationship to BMD in children. Med Sci Sports Exerc. 1993;25:1203–10.

    CAS  PubMed  Google Scholar 

  125. Taaffe DR, Snow-Harter C, Connolly DA, Robinson TL, Brown MD, Marcus R. Differential effects of swimming versus weight-bearing activity on bone mineral status of eumenorreic athletes. J Bone Miner Res. 1995;10:586–92.

    CAS  PubMed  Google Scholar 

  126. Cw S, Reister TK, Hui SL, Miller JZ, Christian JC, Johnston CC. Influence on skeletal mineralization in children and adolescents, evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125:201–7.

    Google Scholar 

  127. Morris FL, Naughton GA, Gibbs JL, Carlson JS, Wark JD. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12:1453–62.

    CAS  PubMed  Google Scholar 

  128. Devlin MJ. Estrogen, exercise, and the skeleton. Evol Anthropol. 2011;20(11):54–61.

    PubMed  Google Scholar 

  129. Malina RM. Physical growth and biologial maturation of young athletes. Exerc Sport Sci Rev. 1994;22:389–433.

    CAS  PubMed  Google Scholar 

  130. Anderson J, JA M. Contributions of dietary calcium and physical activity to primary prevention of osteoporosis in females. J Am College Nutr. 1993;12:378–83.

    CAS  Google Scholar 

  131. Krall EA, Dawson-Hughes B. Smoking and bone loss among postmenopausal women. J Bone Miner Res. 1991;6(4):331–8.

    CAS  PubMed  Google Scholar 

  132. Krall EA, Dawson-Hughes B. Smoking increases bone loss and decreases intestinal calcium absorption. J Bone Miner Res. 1999;14(2):215–20.

    CAS  PubMed  Google Scholar 

  133. Kline J, Tang A, Levin B. Smoking, alcohol and caffeine in relation to two hormonal indicators of ovarian age during the reproductive years. Maturitas. 2016;92:115–22.

    CAS  PubMed  Google Scholar 

  134. Zhang X, Yu Z, Yu M, Qu X. Alcohol consumption and hip fracture risk. Osteoporos Int. 2015;26:531–42.

    CAS  PubMed  Google Scholar 

  135. Drinkwater BL, Nilson K, Ott S, Chesnut CH 3rd. Bone mineral density after resumption of menses in amenorrheic athletes. JAMA. 1986;256(3):380–2.

    CAS  PubMed  Google Scholar 

  136. Myburgh KH, Hutchins J, Fataar AB, Hough SF, Noakes TD. Low bone density is an etiologic factor for stress fractures in athletes. Ann Intern Med. 1990;113(10):754–9.

    CAS  PubMed  Google Scholar 

  137. Warren MP, Stiehl AL. Exercise and female adolescents: effects on the reproductive and skeletal systems. J Am Med Womens Assoc (1972). 1999;54(3):115–20, 38.

    CAS  PubMed  Google Scholar 

  138. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int. 1997;7:311–5.

    CAS  PubMed  Google Scholar 

  139. Barrack MT, Gibbs JC, De Souza MJ, Williams NI, Nichols JF, Rauh MJ, et al. Higher incidence of bone stress injuries with increasing female athlete triad-related risk factors: a prospective multisite study of exercising girls and women. Am J Sports Med. 2014;42(4):949–58.

    PubMed  Google Scholar 

  140. Rauh MJ, Barrack M, Nichols JF. Associations between the female athlete triad and injury among high school runners. Int J Sports Phys Ther. 2014;9(7):948–58.

    PubMed  PubMed Central  Google Scholar 

  141. Thein-Nissenbaum JM, Rauh MJ, Carr KE, Loud KJ, McGuine TA. Menstrual irregularity and musculoskeletal injury in female high school athletes. J Athl Train. 2012;47(1):74–82.

    PubMed  PubMed Central  Google Scholar 

  142. Zanker CL, Osborne C, Cooke CB, Oldroyd B, Truscott JG. Bone density, body composition and menstrual history of sedentary female former gymnasts, aged 20-32 years. Osteoporos Int. 2004;15(2):145–54.

    CAS  PubMed  Google Scholar 

  143. Drinkwater BL, Nilson K, Chesnut CH 3rd, Bremner WJ, Shainholtz S, Southworth MB. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984;311(5):277–81.

    CAS  PubMed  Google Scholar 

  144. De Souza MJ, Williams NI. Physiological aspects and clinical sequelae of energy deficiency and hypoestrogenism in exercising women. Hum Reprod Update. 2004;10(5):433–48.

    PubMed  Google Scholar 

  145. De Souza MJ, Nattiv A, Joy E, Misra M, Williams NI, Mallinson RJ, et al. 2014 Female Athlete Triad Coalition consensus statement on treatment and return to play of the female athlete triad: 1st International Conference held in San Francisco, CA, May 2012, and 2nd International Conference held in Indianapolis, IN, May 2013. Clin J Sport Med. 2014;24(2):96–119.

    PubMed  Google Scholar 

  146. Chevalley T, Rizzoli R, Hans D, Ferrari S, Bonjour JP. Interaction between calcium intake and menarcheal age on bone mass gain: an eight-year follow-up study from prepuberty and postmenarche. J Clin Endocrinol Metab. 2005;90(1):44–51.

    CAS  PubMed  Google Scholar 

  147. Winzenberg T, Powell S, Shaw KA, Jones G. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ. 2011;342:c7254.

    PubMed  PubMed Central  Google Scholar 

  148. Cranney A, Horsley T, O’Donnell S, Weiler H, Puil L, Ooi D, et al. Effectiveness and safety of vitamin D in relation to bone health. Evid Rep Technol Assess (Full Rep). 2007;158:1–235.

    Google Scholar 

  149. Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, et al. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99(6):1287–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Bergstrom I, Crisby M, Engstrom AM, Holcke M, Fored M, Jakobsson Kruse P, et al. Women with anorexia nervosa should not be treated with estrogen or birth control pills in a bone-sparing effect. Acta Obstet Gynecol Scand. 2013;92(8):877–80.

    PubMed  Google Scholar 

  151. Warren MP, Brooks-Gunn J, Fox RP, Holderness CC, Hyle EP, Hamilton WG, et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril. 2003;80(2):398–404.

    PubMed  Google Scholar 

  152. Cobb KL, Bachrach LK, Sowers M, Nieves J, Greendale GA, Kent KK, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc. 2007;39(9):1464–73.

    CAS  PubMed  Google Scholar 

  153. Kam GY, Leung KC, Baxter RC, Ho KK. Estrogens exert route- and dose-dependent effects on insulin-like growth factor (IGF)-binding protein-3 and the acid-labile subunit of the IGF ternary complex. J Clin Endocrinol Metab. 2000;85(5):1918–22.

    CAS  PubMed  Google Scholar 

  154. Nappi C, Di Spiezio SA, Greco E, Tommaselli GA, Giordano E, Guida M. Effects of an oral contraceptive containing drospirenone on bone turnover and bone mineral density. Obstet Gynecol. 2005;105(1):53–60.

    CAS  PubMed  Google Scholar 

  155. Trevisan C, Alessi A, Girotti G, Zanforlini BM, Bertocco A, Mazzochin M, et al. The Impact of Smoking on Bone Metabolism, Bone Mineral Density and Vertebral Fractures in Postmenopausal Women. J Clin Densitom. 2019.

    Google Scholar 

  156. Sommer I, Erkkila AT, Jarvinen R, Mursu J, Sirola J, Jurvelin JS, et al. Alcohol consumption and bone mineral density in elderly women. Public Health Nutr. 2013;16(4):704–12.

    PubMed  Google Scholar 

  157. Cho Y, Choi S, Kim K, Lee G, Park SM. Association between alcohol consumption and bone mineral density in elderly Korean men and women. Arch Osteoporos. 2018;13(1):46.

    PubMed  Google Scholar 

  158. Nachtigall MJ, Nazem TG, Nachtigall RH, Goldstein SR. Osteoporosis risk factors and early life-style modifications to decrease disease burden in women. Clin Obstet Gynecol. 2013;56(4):650–3.

    PubMed  Google Scholar 

  159. Aldahr M. Bone mineral status response to aerobic versus resistance exercise training in postmenopausal women. World Appl Sci J. 2012;16(6):806–13.

    Google Scholar 

  160. Riggs BL, Wahner HW, Melton LJ 3rd, Richelson LS, Judd HL, Offord KP. Rates of bone loss in the appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause. J Clin Invest. 1986;77(5):1487–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Seifert-Klauss V, Link T, Heumann C, Luppa P, Haseitl M, Laakmann J, et al. Influence of pattern of menopausal transition on the amount of trabecular bone loss. Results from a 6-year prospective longitudinal study. Maturitas. 2006;55(4):317–24.

    CAS  PubMed  Google Scholar 

  162. Chapurlat RD, Garnero P, Sornay-Rendu E, Arlot ME, Claustrat B, Delmas PD. Longitudinal study of bone loss in pre- and perimenopausal women: evidence for bone loss in perimenopausal women. Osteoporos Int. 2000;11(6):493–8.

    CAS  PubMed  Google Scholar 

  163. Sowers MR, Zheng H, Jannausch ML, McConnell D, Nan B, Harlow S, et al. Amount of bone loss in relation to time around the final menstrual period and follicle-stimulating hormone staging of the transmenopause. J Clin Endocrinol Metab. 2010;95(5):2155–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, et al. A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23(2):205–14.

    PubMed  Google Scholar 

  165. Guthrie JR, Ebeling PR, Hopper JL, Barrett-Connor E, Dennerstein L, Dudley EC, et al. A prospective study of bone loss in menopausal Australian-born women. Osteoporos Int. 1998;8(3):282–90.

    CAS  PubMed  Google Scholar 

  166. Sowers M, Crutchfield M, Bandekar R, Randolph JF, Shapiro B, Schork MA, et al. Bone mineral density and its change in pre-and perimenopausal white women: the Michigan Bone Health Study. J Bone Miner Res. 1998;13(7):1134–40.

    CAS  PubMed  Google Scholar 

  167. Crandall CJ, Tseng CH, Karlamangla AS, Finkelstein JS, Randolph JF Jr, Thurston RC, et al. Serum sex steroid levels and longitudinal changes in bone density in relation to the final menstrual period. J Clin Endocrinol Metab. 2013;98(4):E654–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Slemenda C, Hui SL, Longcope C, Johnston CC. Sex steroids and bone mass. A study of changes about the time of menopause. J Clin Invest. 1987;80(5):1261–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Chin KY. The relationship between follicle-stimulating hormone and bone health: alternative explanation for bone loss beyond oestrogen? Int J Med Sci. 2018;15(12):1373–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Hui SL, Perkins AJ, Zhou L, Longcope C, Econs MJ, Peacock M, et al. Bone loss at the femoral neck in premenopausal white women: effects of weight change and sex-hormone levels. J Clin Endocrinol Metab. 2002;87(4):1539–43.

    CAS  PubMed  Google Scholar 

  171. Greendale GA, Sowers M, Han W, Huang MH, Finkelstein JS, Crandall CJ, et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN). J Bone Miner Res. 2012;27(1):111–8.

    PubMed  Google Scholar 

  172. Ishii S, Cauley JA, Greendale GA, Crandall CJ, Huang MH, Danielson ME, et al. Trajectories of femoral neck strength in relation to the final menstrual period in a multi-ethnic cohort. Osteoporos Int. 2013;24(9):2471–81.

    CAS  PubMed  Google Scholar 

  173. Sowers MR, Zheng H, Greendale GA, Neer RM, Cauley JA, Ellis J, et al. Changes in bone resorption across the menopause transition: effects of reproductive hormones, body size, and ethnicity. J Clin Endocrinol Metab. 2013;98(7):2854–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Cauley JA, Danielson ME, Greendale GA, Finkelstein JS, Chang YF, Lo JC, et al. Bone resorption and fracture across the menopausal transition: the Study of Women’s Health Across the Nation. Menopause (New York, NY). 2012;19(11):1200–7.

    Google Scholar 

  175. Lock CA, Lecouturier J, Mason JM, Dickinson HO. Lifestyle interventions to prevent osteoporotic fractures: a systematic review. Osteoporos Int. 2006;17(1):20–8.

    PubMed  Google Scholar 

  176. Torgerson DJ, Bell-Syer SE. Hormone replacement therapy and prevention of vertebral fractures: a meta-analysis of randomised trials. BMC Musculoskelet Disord. 2001;2:7.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Solomon DH, Diem SJ, Ruppert K, Lian YJ, Liu CC, Wohlfart A, et al. Bone mineral density changes among women initiating proton pump inhibitors or H2 receptor antagonists: a SWAN cohort study. J Bone Miner Res. 2015;30(2):232–9.

    CAS  PubMed  Google Scholar 

  178. Zhao R, Xu Z, Zhao M. Effects of oestrogen treatment on skeletal response to exercise in the hips and spine in postmenopausal women: a meta-analysis. Sports Med. 2015;45(8):1163–73.

    PubMed  Google Scholar 

  179. Sipila S, Taaffe DR, Cheng S, Puolakka J, Toivanen J, Suominen H. Effects of hormone replacement therapy and high-impact physical exercise on skeletal muscle in post-menopausal women: a randomized placebo-controlled study. Clin Sci (Lond). 2001;101(2):147–57.

    CAS  PubMed  Google Scholar 

  180. Cook JL, Bass SL, Black JE. Hormone therapy is associated with smaller Achilles tendon diameter in active post-menopausal women. Scand J Med Sci Sports. 2007;17(2):128–32.

    CAS  PubMed  Google Scholar 

  181. Karlamangla AS, Burnett-Bowie SM, Crandall CJ. Bone health during the menopause transition and beyond. Obstet Gynecol Clin North Am. 2018;45(4):695–708.

    PubMed  PubMed Central  Google Scholar 

  182. Avenell A, Mak JCS, O’Connell D. Vitamin D and related vitamin D compounds for preventing fractures resulting from osteoporosis in older people. Cochrane Database Syst Rev. 2014;4

    Google Scholar 

  183. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet (London, England). 2007;370(9588):657–66.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany Dowling .

Editor information

Editors and Affiliations

Chapter Review Questions

Chapter Review Questions

  1. 1.

    The hormone from the hypothalamus that stimulates pituitary LH release is

    1. (a)

      Estrogen

    2. (b)

      ACTH

    3. (c)

      Progesterone

    4. (d)

      GnRH

  2. 2.

    The hormones primarily responsible for breast development at puberty in girls are

    1. (a)

      Estrogen and progesterone

    2. (b)

      LH and FSH

    3. (c)

      Cortisol and thyroxine

    4. (d)

      GnRH and TRH

  3. 3.

    The phase of the cycle when the lining of the uterus is growing is

    1. (a)

      Menstrual

    2. (b)

      Luteal

    3. (c)

      Follicular

    4. (d)

      Secretory

  4. 4.

    The hormone that causes ovulation is

    1. (a)

      FSH

    2. (b)

      LH

    3. (c)

      Prolactin

    4. (d)

      GnRH

  5. 5.

    What hormone prepares the lining of the uterus for implantation of the early embryo?

    1. (a)

      LH

    2. (b)

      FSH

    3. (c)

      GnRH

    4. (d)

      Progesterone

  6. 6.

    How many follicles normally mature and ovulate in the human?

    1. (a)

      One

    2. (b)

      Two

    3. (c)

      Ten

    4. (d)

      Many

  7. 7.

    Primary amenorrhea is when a young woman

    1. (a)

      Has her first menstrual period

    2. (b)

      Has not had her first menstrual period by age 15

    3. (c)

      Is infertile

    4. (d)

      Has had her first menstrual period by age 12

  8. 8.

    Menstrual cycles can be disturbed by many internal and external factors. The factor thought to be the primary influence on cycles in female athletes is

    1. (a)

      Too much exercise

    2. (b)

      Low energy availability

    3. (c)

      Birth control pills

    4. (d)

      Pituitary tumors

  9. 9.

    Amenorrhea in women who exercise excessively is most likely due to

    1. (a)

      Exercise

    2. (b)

      Psychological stress

    3. (c)

      Low energy availability

    4. (d)

      Genetics

  10. 10.

    Which hormones play a role in bone development?

    1. (a)

      Estrogen

    2. (b)

      GH and IGF-1

    3. (c)

      Vitamin D

    4. (d)

      All of the above

  11. 11.

    Which hormone is primarily responsible for closing the growth plates?

    1. (a)

      GnRH

    2. (b)

      Progesterone

    3. (c)

      Estrogen

    4. (d)

      FSH

  12. 12.

    True or False: Bone mineral density is shown to decline as the number of missed periods increases.

    1. (a)

      True

    2. (b)

      False

  13. 13.

    During menopause there is a decline in estrogen and increase in levels of which hormone, both of which are likely contributors to the decline in bone density?

    1. (a)

      Progesterone

    2. (b)

      GH

    3. (c)

      FSH

    4. (d)

      LH

  14. 14.

    One of the primary benefits of estrogen replacement therapy after menopause is

    1. (a)

      Continued menstruation

    2. (b)

      Protection against bone loss

    3. (c)

      Protection against stroke

    4. (d)

      Continued breast development

Answers

  1. 1.

    d

  2. 2.

    a

  3. 3.

    c

  4. 4.

    b

  5. 5.

    d

  6. 6.

    a

  7. 7.

    b

  8. 8.

    b

  9. 9.

    c

  10. 10.

    d

  11. 11.

    c

  12. 12.

    a

  13. 13.

    c

  14. 14.

    b

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dowling, B., Forsyth, J.J., Zumwalt, M., Robert-McComb, J.J. (2023). Reproductive Changes from Puberty to Menopause and the Effects of the Menstrual Cycle on Bone Formation and Bone Loss. In: Robert-McComb, J.J., Zumwalt, M., Fernandez-del-Valle, M. (eds) The Active Female. Springer, Cham. https://doi.org/10.1007/978-3-031-15485-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15485-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15484-3

  • Online ISBN: 978-3-031-15485-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics