Skip to main content

Considerations of Sex Differences in Musculoskeletal Anatomy Between Males and Females

  • Chapter
  • First Online:
The Active Female

Abstract

The musculoskeletal anatomy of women and men is grossly similar yet individually distinctive. Sexual dimorphism in the human musculoskeletal system is apparent but more subtle than in other species. Some musculoskeletal sex differences in humans are present at an early age, while others tend to appear later in life. Sex differences in gross skeletal geometry and specific tissue characteristics are common. Women tend to have different characteristics of specific bones and bony features than men which have been explained by both genetic and environmental factors. Women and men appear to have several differences in collagenous, cartilage, and bone tissues, which may predispose women to certain pathologies such as osteoarthritis and osteoporosis later in life. Sexual dimorphism can manifest itself by specific differences in each joint throughout the body, possibly resulting in sex differences of clinical pathology and symptomology such as differences in shoulder impingement; laxity and idiopathic capsulitis; elbow tendinosis; carpal tunnel syndrome; hip fracture and labral tears; anterior cruciate ligament injuries; ankle sprains and Achilles tendinopathy; cervical spine macrotrauma; thoracolumbar postural changes including kyphosis, lordosis, and/or scoliosis; and sacroiliac joint conditions. Consideration of the sex differences in musculoskeletal anatomy is important for both the general public and health care professionals in order to provide a basis for understanding normal and abnormal conditions that may exist. Moreover, a thorough appreciation that men and women have differences in musculoskeletal anatomy may help in the understanding that they have distinctive health care needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walker PBM. Chambers science and technology dictionary. Cambridge: W & R Chambers Ltd and Cambridge University Press.

    Google Scholar 

  2. Anonymous. Webster’s online dictionary. Internet [serial online]. 2011. Accessed 15 Feb 2012.

    Google Scholar 

  3. Smith FW, Smith PA. Musculoskeletal differences between males and females. Sports Med Arthrosc Rev. 2002;10:98–100.

    Google Scholar 

  4. Chmielewski T, Ferber R. Rehabilitation considerations for the female athlete. In: Andrews JR, Harrelson GL, Wilk KE, editors. Physical rehabilitation of the injured athlete. 3rd ed. Philadelphia, PA: Saunders; 2004. p. 315–28.

    Google Scholar 

  5. NASA. https://www.nasa.gov/centers/ames/images/content/72419main_plaquem.jpg.

  6. Centers for Disease Control and Prevention, National Center for Health Statistics. CDC growth charts: United States. http://www.cdc.gov/growthcharts/. Accessed 30 May 2000.

  7. Greil H, Lange E. Sexual dimorphism from birth to age 60 in relation to the type of body shape. Anthropol Anz. 2007;65(1):61–73.

    PubMed  Google Scholar 

  8. Horton MG, Hall TL. Quadriceps femoris muscle angle: normal values and relationships with gender and selected skeletal measures. Phys Ther. 1989;69:897–901.

    CAS  PubMed  Google Scholar 

  9. Kersnic B, Iglic A, Kralj-Iglic V, et al. Determination of the femoral and pelvic geometrical parameters that are important for the hip joint contact stress: differences between female and male. Pflugers Arch. 1996;431:R207–8.

    CAS  PubMed  Google Scholar 

  10. Souryal TO, Freeman TR. Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study. Am J Sports Med. 1993;21:535–9.

    CAS  PubMed  Google Scholar 

  11. Woodland LH, Francis RS. Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med. 1992;20:208–11.

    CAS  PubMed  Google Scholar 

  12. Yoshioka Y, Siu DW, Scudamore RA, Cooke TD. Tibial anatomy and functional axes. J Orthop Res. 1989;7:132–7.

    CAS  PubMed  Google Scholar 

  13. Shelbourne KD, Davis TJ, Klootwyk TE. The relationship between intercondylar notch width of the femur and the incidence of anterior cruciate ligament tears. A prospective study. Am J Sports Med. 1998;26:402–8.

    CAS  PubMed  Google Scholar 

  14. Ireland ML, Ballantyne BT, Little K, McClay IS. A radiographic analysis of the relationship between the size and shape of the intercondylar notch and anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc. 2001;9:200–5.

    CAS  PubMed  Google Scholar 

  15. LaPrade RF, Burnett QM. Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries. A prospective study. Am J Sports Med. 1994;22:198–202.

    CAS  PubMed  Google Scholar 

  16. Hashemi J, Chandrashekar N, Gill B, et al. The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. J Bone Joint Surg Am. 2008;90:2724–34.

    PubMed  PubMed Central  Google Scholar 

  17. Tillman MD, Bauer JA, Cauraugh JH, Trimble MH. Differences in lower extremity alignment between males and females. Potential predisposing factors for knee injury. J Sports Med Phys Fitness. 2005;45:355–9.

    CAS  PubMed  Google Scholar 

  18. Gualdi-Russo E. Study on long bones: variation in angular traits with sex, age, and laterality. Anthropol Anz. 1998;56:289–99.

    CAS  PubMed  Google Scholar 

  19. LaVelle M. Natural selection and developmental sexual variation in the human pelvis. Am J Phys Anthropol. 1995;98:59–72.

    CAS  PubMed  Google Scholar 

  20. Patriquin ML, Loth SR, Steyn M. Sexually dimorphic pelvic morphology in South African whites and blacks. Homo. 2003;53:255–62.

    CAS  PubMed  Google Scholar 

  21. Igbigbi PS, Msamati BC, Ng’Ambi TM. Intercondylar shelf angle in adult black Malawian subjects. Clin Anat. 2001;14:254–7.

    CAS  PubMed  Google Scholar 

  22. Iscan MY, Shihai D. Sexual dimorphism in the Chinese femur. Forensic Sci Int. 1995;74:79–87.

    CAS  PubMed  Google Scholar 

  23. King CA, Iscan MY, Loth SR. Metric and comparative analysis of sexual dimorphism in the Thai femur. J Forensic Sci. 1998;43:954–8.

    CAS  PubMed  Google Scholar 

  24. Macho GA. Is sexual dimorphism in the femur a “population specific phenomenon”? Z Morphol Anthropol. 1990;78:229–42.

    CAS  PubMed  Google Scholar 

  25. Mall G, Graw M, Gehring K, Hubig M. Determination of sex from femora. Forensic Sci Int. 2000;113:315–21.

    CAS  PubMed  Google Scholar 

  26. Purkait R, Chandra H. A study of sexual variation in Indian femur. Forensic Sci Int. 2004;146:25–33.

    PubMed  Google Scholar 

  27. Iscan MY, Miller-Shaivitz P. Determination of sex from the tibia. Am J Phys Anthropol. 1984;64:53–7.

    CAS  PubMed  Google Scholar 

  28. Iscan MY, Yoshino M, Kato S. Sex determination from the tibia: standards for contemporary Japan. J Forensic Sci. 1994;39:785–92.

    CAS  PubMed  Google Scholar 

  29. Ruff CB, Hayes WC. Cross-sectional geometry of Pecos Pueblo femora and tibiae–a biomechanical investigation: II. Sex, age, side differences. Am J Phys Anthropol. 1983;60:383–400.

    CAS  PubMed  Google Scholar 

  30. Steele DG. The estimation of sex on the basis of the talus and calcaneus. Am J Phys Anthropol. 1976;45:581–8.

    CAS  PubMed  Google Scholar 

  31. Bidmos MA, Asala SA. Discriminant function sexing of the calcaneus of the South African whites. J Forensic Sci. 2003;48:1213–8.

    PubMed  Google Scholar 

  32. Riepert T, Drechsler T, Schild H, Nafe B, Mattern R. Estimation of sex on the basis of radiographs of the calcaneus. Forensic Sci Int. 1996;77:133–40.

    CAS  PubMed  Google Scholar 

  33. Hogler W, Blimkie CJ, Cowell CT, et al. A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone. 2003;33:771–8.

    CAS  PubMed  Google Scholar 

  34. Ashizawa K, Kumakura C, Kusumoto A, Narasaki S. Relative foot size and shape to general body size in Javanese, Filipinas and Japanese with special reference to habitual footwear types. Ann Hum Biol. 1997;24:117–29.

    CAS  PubMed  Google Scholar 

  35. Axer H, von Keyserlingk DG, Prescher A. Collagen fibers in linea alba and rectus sheaths. J Surg Res. 2001;96:239–45.

    CAS  PubMed  Google Scholar 

  36. Tzaphlidou M. Diameter distributions of collagenous tissues in relation to sex. A quantitative ultrastructural study Micron. 2001;32:333–6.

    CAS  PubMed  Google Scholar 

  37. Vitellaro-Zuccarello L, Cappelletti S, Dal Pozzo RV, Sari-Gorla M. Stereological analysis of collagen and elastic fibers in the normal human dermis: variability with age, sex, and body region. Anat Rec. 1994;238:153–62.

    CAS  PubMed  Google Scholar 

  38. Zanze M, Souberbielle JC, Kindermans C, Rossignol C, Garabedian M. Procollagen propeptide and pyridinium cross-links as markers of type I collagen turnover: sex- and age-related changes in healthy children. J Clin Endocrinol Metab. 1997;82:2971–7.

    CAS  PubMed  Google Scholar 

  39. Whiting WC, Zernicke RF. Biomechanics of musculoskeletal injury. Champaign, IL: Human Kinetics; 2008.

    Google Scholar 

  40. Nordin M, Frankel VH. Basic biomechanics of the musculoskeletal system. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001.

    Google Scholar 

  41. Osakabe T, Hayashi M, Hasegawa K, et al. Age- and gender-related changes in ligament components. Ann Clin Biochem. 2001;38:527–32.

    CAS  PubMed  Google Scholar 

  42. Tamir E, Brenner S. Gender differences in collagen diseases. Skinmed. 2003;2:113–7.

    PubMed  Google Scholar 

  43. Ding C, Cicuttini F, Scott F, Glisson M, Jones G. Sex differences in knee cartilage volume in adults: role of body and bone size, age and physical activity. Rheumatology (Oxford). 2003;42:1317–23.

    CAS  PubMed  Google Scholar 

  44. Jones G, Glisson M, Hynes K, Cicuttini F. Sex and site differences in cartilage development: a possible explanation for variations in knee osteoarthritis in later life. Arthritis Rheum. 2000;43:2543–9.

    CAS  PubMed  Google Scholar 

  45. Lanyon P, Muir K, Doherty S, Doherty M. Age and sex differences in hip joint space among asymptomatic subjects without structural change: implications for epidemiologic studies. Arthritis Rheum. 2003;48:1041–6.

    PubMed  Google Scholar 

  46. Larbre JP, Da Silva JA, Moore AR, James IT, Scott DL, Willoughby DA. Cartilage contribution to gender differences in joint disease progression. A study with rat articular cartilage. Clin Exp Rheumatol. 1994;12:401–8.

    CAS  PubMed  Google Scholar 

  47. Cicuttini FM, Wluka A, Bailey M, et al. Factors affecting knee cartilage volume in healthy men. Rheumatology (Oxford). 2003;42:258–62.

    CAS  PubMed  Google Scholar 

  48. Faber SC, Eckstein F, Lukasz S, et al. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging. Skelet Radiol. 2001;30:144–50.

    CAS  Google Scholar 

  49. Mouritzen U, Christgau S, Lehmann HJ, Tanko LB, Christiansen C. Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann Rheum Dis. 2003;62:332–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Da Silva JA, Larbre JP, Seed MP, et al. Sex differences in inflammation induced cartilage damage in rodents. The influence of sex steroids. J Rheumatol. 1994;21:330–7.

    PubMed  Google Scholar 

  51. Fares JE, Choucair M, Nabulsi M, Salamoun M, Shahine CH, Fuleihan G. Effect of gender, puberty, and vitamin D status on biochemical markers of bone remodeling. Bone. 2003;33:242–7.

    CAS  PubMed  Google Scholar 

  52. Nuckley DJ, Eck MP, Carter JW, Ching RP. Spinal maturation affects vertebral compressive mechanics and vBMD with sex dependence. Bone. 2004;35:720–8.

    PubMed  Google Scholar 

  53. Katzburg S, Lieberherr M, Ornoy A, Klein BY, Hendel D, Somjen D. Isolation and hormonal responsiveness of primary cultures of human bone-derived cells: gender and age differences. Bone. 1999;25:667–73.

    CAS  PubMed  Google Scholar 

  54. Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab. 1998;83:2266–74.

    CAS  PubMed  Google Scholar 

  55. Beck TJ, Ruff CB, Shaffer RA, Betsinger K, Trone DW, Brodine SK. Stress fracture in military recruits: gender differences in muscle and bone susceptibility factors. Bone. 2000;27:437–44.

    CAS  PubMed  Google Scholar 

  56. Kaptoge S, Dalzell N, Loveridge N, Beck TJ, Khaw KT, Reeve J. Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone. 2003;32:561–70.

    PubMed  Google Scholar 

  57. Schuit SC, Van der KM, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.

    CAS  PubMed  Google Scholar 

  58. Krall EA, Dawson-Hughes B, Hirst K, Gallagher JC, Sherman SS, Dalsky G. Bone mineral density and biochemical markers of bone turnover in healthy elderly men and women. J Gerontol A Biol Sci Med Sci. 1997;52:M61–7.

    CAS  PubMed  Google Scholar 

  59. Forwood MR, Bailey DA, Beck TJ, Mirwald RL, Baxter-Jones AD, Uusi-Rasi K. Sexual dimorphism of the femoral neck during the adolescent growth spurt: a structural analysis. Bone. 2004;35:973–81.

    PubMed  Google Scholar 

  60. Mosekilde L. Sex differences in age-related loss of vertebral trabecular bone mass and structure–biomechanical consequences. Bone. 1989;10:425–32.

    CAS  PubMed  Google Scholar 

  61. Henry YM, Eastell R. Ethnic and gender differences in bone mineral density and bone turnover in young adults: effect of bone size. Osteoporos Int. 2000;11:512–7.

    CAS  PubMed  Google Scholar 

  62. Minisola S, Dionisi S, Pacitti MT, et al. Gender differences in serum markers of bone resorption in healthy subjects and patients with disorders affecting bone. Osteoporos Int. 2002;13:171–5.

    CAS  PubMed  Google Scholar 

  63. Smith EL, Smith KA, Gilligan C. Exercise, fitness, osteoarthritis, and osteoporosis. In: Bouchard C, Shephard RJ, Stephens T, Sutton JR, McPherson BD, editors. Exercise, fitness, and health: a consensus of current knowledge. Champaign, IL: Human Kinetics; 1990. p. 517–28.

    Google Scholar 

  64. Harrison JE, Chow R. Discussion: exercise, fitness, osteoarthritis, and osteoporosis. In: Bouchard C, Shephard RJ, Stephens T, Sutton JR, McPherson BD, editors. Exercise, fitness, and health: a consensus of current knowledge. Champaign, IL: Human Kinetics; 1990. p. 529–32.

    Google Scholar 

  65. Anonymous. Osteoporosis: peak bone mass in women. Osteo org [serial online]. 2005.

    Google Scholar 

  66. Pandley SK, Shamal S, Kuman S, Shukla VK. Articular branch of the axillary artery and its clinical implication. Nepal Med Coll J. 2003;5:61–3.

    Google Scholar 

  67. Bhatia DN, de Beer JF, du Toit DF. Coracoid process anatomy: implications in radiographic imaging and surgery. Clin Anat. 2007;20:774–84.

    PubMed  Google Scholar 

  68. Radas CBPHG. The coracoid impingement of the subscapularis tendon: a cadaver study. J Shoulder Elb Surg. 2004;13:154–9.

    Google Scholar 

  69. Bigliani LU, Morrison DS, April E. The morphology of the acromion and its relationship to rotator cuff tears. Orthop Trans. 1986;10:228.

    Google Scholar 

  70. Bigliani LU, Ticker JB, Flatow EL, Soslowsky LJ, Mow VC. The relationship of acromial architecture to rotator cuff disease. Clin Sports Med. 1991;10:823–38.

    CAS  PubMed  Google Scholar 

  71. Berbig R, Weishaupt D, Prim J, Shahin O. Primary anterior shoulder dislocation and rotator cuff tears. J Shoulder Elb Surg. 1999;8:220–5.

    CAS  Google Scholar 

  72. Speer KP, Osbahr DC, Montella BJ, Apple AS, Mair SD. Acromial morphotype in the young asymptomatic athletic shoulder. J Shoulder Elb Surg. 2001;10:434–7.

    CAS  Google Scholar 

  73. Getz JD, Recht MP, Piraino DW, et al. Acromial morphology: relation to sex, age, symmetry, and subacromial enthesophytes. Radiology. 1996;199:737–42.

    CAS  PubMed  Google Scholar 

  74. Gill TJ, McIrvin E, Kocher MS, Homa K, Mair SD, Hawkins RJ. The relative importance of acromial morphology and age with respect to rotator cuff pathology. J Shoulder Elb Surg. 2002;11:327–30.

    Google Scholar 

  75. Wang JC, Shapiro MS. Changes in acromial morphology with age. J Shoulder Elb Surg. 1997;6:55–9.

    CAS  Google Scholar 

  76. Mahakkanukrauh P, Surin P. Prevalence of osteophytes associated with the acromion and acromioclavicular joint. Clin Anat. 2003;16:506–10.

    PubMed  Google Scholar 

  77. Graichen H, Bonel H, Stammberger T, Englmeier KH, Reiser M, Eckstein F. Sex-specific differences of subacromial space width during abduction, with and without muscular activity, and correlation with anthropometric variables. J Shoulder Elb Surg. 2001;10:129–35.

    CAS  Google Scholar 

  78. McKenna L, Straker L, Smith A, Cunningham J. Differences in scapular and humeral head position between swimmers and non-swimmers. Scand J Med Sci Sports. 2011;21:206–14.

    CAS  PubMed  Google Scholar 

  79. Gill TJ, Zarins B. Open repairs for the treatment of anterior shoulder instability. Am J Sports Med. 2003;31:142–53.

    PubMed  Google Scholar 

  80. Borsa PA, Sauers EL, Herling DE. Patterns of glenohumeral joint laxity and stiffness in healthy men and women. Med Sci Sports Exerc. 2000;32:1685–90.

    CAS  PubMed  Google Scholar 

  81. Hawkins RJ, Mohtadi NG. Controversy in anterior shoulder instability. Clin Orthop Relat Res. 1991;272:152–61.

    Google Scholar 

  82. Kronberg M, Brostrom LA. Humeral head retroversion in patients with unstable humeroscapular joints. Clin Orthop Relat Res. 1990;260:207–11.

    Google Scholar 

  83. Churchill RS, Brems JJ, Kotschi H. Glenoid size, inclination, and version: an anatomic study. J Shoulder Elb Surg. 2001;10:327–32.

    CAS  Google Scholar 

  84. Merrill A, Guzman K, Miller SL. Gender differences in glenoid anatomy: an anatomic study. Surg Radiol Anat. 2009;31:183–9.

    PubMed  Google Scholar 

  85. Arkkila PE, Kantola IM, Viikari JS, Ronnemaa T. Shoulder capsulitis in type I and II diabetic patients: association with diabetic complications and related diseases. Ann Rheum Dis. 1996;55:907–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Omari A, Bunker TD. Open surgical release for frozen shoulder: surgical findings and results of the release. J Shoulder Elb Surg. 2001;10:353–7.

    CAS  Google Scholar 

  87. Mengiardi B, Pfirrmann CW, Gerber C, Hodler J, Zanetti M. Frozen shoulder: MR arthrographic findings. Radiology. 2004;233:486–92.

    PubMed  Google Scholar 

  88. Hutchinson JW, Tierney GM, Parsons SL, Davis TR. Dupuytren’s disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. J Bone Joint Surg Br. 1998;80:907–8.

    CAS  PubMed  Google Scholar 

  89. Nirschl RP. Tennis elbow tendinosis: pathoanatomy, nonsurgical and surgical management. In: Gordon SLBSJFLJ, editor. Repetitive motion disorders of the upper extremity. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1995. p. 467–78.

    Google Scholar 

  90. Svernlov B, Adolfsson L. Non-operative treatment regime including eccentric training for lateral humeral epicondylalgia. Scand J Med Sci Sports. 2001;11:328–34.

    CAS  PubMed  Google Scholar 

  91. Winkel D, Matthijs O, Phelps V. Part 2: The knee. Diagnosis and treatment of the lower extremities. Gaithersburg, MD: Aspen Publishers, Inc.; 1997.

    Google Scholar 

  92. Solveborn SA. Radial epicondylalgia (‘tennis elbow’): treatment with stretching or forearm band. A prospective study with long-term follow-up including range-of-motion measurements. Scand J Med Sci Sports. 1997;7:229–37.

    CAS  PubMed  Google Scholar 

  93. Ljung BO, Lieber RL, Friden J. Wrist extensor muscle pathology in lateral epicondylitis. J Hand Surg (Br). 1999;24:177–83.

    CAS  PubMed  Google Scholar 

  94. Alfredson H, Ljung BO, Thorsen K, Lorentzon R. In vivo investigation of ECRB tendons with microdialysis technique—no signs of inflammation but high amounts of glutamate in tennis elbow. Acta Orthop Scand. 2000;71:475–9.

    CAS  PubMed  Google Scholar 

  95. Richardson JK, Green DF, Jamieson SC, Valentin FC. Gender, body mass and age as risk factors for ulnar mononeuropathy at the elbow. Muscle Nerve. 2001;24:551–4.

    CAS  PubMed  Google Scholar 

  96. Tanaka S, Petersen M, Cameron L. Prevalence and risk factors of tendinitis and related disorders of the distal upper extremity among U.S. workers: comparison to carpal tunnel syndrome. Am J Ind Med. 2001;39:328–35.

    CAS  PubMed  Google Scholar 

  97. Moghtaderi A, Izadi S, Sharafadinzadeh N. An evaluation of gender, body mass index, wrist circumference and wrist ratio as independent risk factors for carpal tunnel syndrome. Acta Neurol Scand. 2005;112:375–9.

    CAS  PubMed  Google Scholar 

  98. McDiarmid M, Oliver M, Ruser J, Gucer P. Male and female rate differences in carpal tunnel syndrome injuries: personal attributes or job tasks? Environ Res. 2000;83:23–32.

    CAS  PubMed  Google Scholar 

  99. Mondelli M, Aprile I, Ballerini M, et al. Sex differences in carpal tunnel syndrome: comparison of surgical and non-surgical populations. Eur J Neurol. 2005;12:976–83.

    CAS  PubMed  Google Scholar 

  100. Pierre-Jerome C, Bekkelund SI, Nordstrom R. Quantitative MRI analysis of anatomic dimensions of the carpal tunnel in women. Surg Radiol Anat. 1997;19:31–4.

    CAS  PubMed  Google Scholar 

  101. Siegel DB, Kuzma G, Eakins D. Anatomic investigation of the role of the lumbrical muscles in carpal tunnel syndrome. J Hand Surg [Am]. 1995;20:860–3.

    CAS  Google Scholar 

  102. Richards RS, Bennett JD. Abnormalities of the hook of the hamate in patients with carpal tunnel syndrome. Ann Plast Surg. 1997;39:44–6.

    CAS  PubMed  Google Scholar 

  103. Boz C, Ozmenoglu M, Altunayoglu V, Velioglu S, Alioglu Z. Individual risk factors for carpal tunnel syndrome: an evaluation of body mass index, wrist index and hand anthropometric measurements. Clin Neurol Neurosurg. 2004;106:294–9.

    PubMed  Google Scholar 

  104. Massy-Westropp N, Grimmer K, Bain G. The effect of a standard activity on the size of the median nerve as determined by ultrasound visualization. J Hand Surg [Am]. 2001;26:649–54.

    CAS  Google Scholar 

  105. Crisco JJ, Coburn JC, Moore DC, Upal MA. Carpal bone size and scaling in men versus in women. J Hand Surg [Am]. 2005;30:35–42.

    Google Scholar 

  106. Hamanaka I, Okutsu I, Shimizu K, Takatori Y, Ninomiya S. Evaluation of carpal canal pressure in carpal tunnel syndrome. J Hand Surg [Am]. 1995;20:848–54.

    CAS  Google Scholar 

  107. Ham SJ, Kolkman WF, Heeres J, den Boer JA. Changes in the carpal tunnel due to action of the flexor tendons: visualization with magnetic resonance imaging. J Hand Surg [Am]. 1996;21:997–1003.

    CAS  Google Scholar 

  108. Rempel D, Keir PJ, Smutz WP, Hargens A. Effects of static fingertip loading on carpal tunnel pressure. J Orthop Res. 1997;15:422–6.

    CAS  PubMed  Google Scholar 

  109. Chen WS. Median-nerve neuropathy associated with chronic anterior dislocation of the lunate. J Bone Joint Surg Am. 1995;77:1853–7.

    CAS  PubMed  Google Scholar 

  110. Seradge H, Jia YC, Owens W. In vivo measurement of carpal tunnel pressure in the functioning hand. J Hand Surg [Am]. 1995;20:855–9.

    CAS  Google Scholar 

  111. Gelberman RH, Hergenroeder PT, Hargens AR, Lundborg GN, Akeson WH. The carpal tunnel syndrome. A study of carpal canal pressures. J Bone Joint Surg Am. 1981;63:380–3.

    CAS  PubMed  Google Scholar 

  112. Buschbacher RM. Mixed nerve conduction studies of the median and ulnar nerves. Am J Phys Med Rehabil. 1999;78:S69–74.

    CAS  PubMed  Google Scholar 

  113. Vennix MJ, Hirsh DD, Chiou-Tan FY, Rossi CD. Predicting acute denervation in carpal tunnel syndrome. Arch Phys Med Rehabil. 1998;79:306–12.

    CAS  PubMed  Google Scholar 

  114. Tetro AM, Evanoff BA, Hollstien SB, Gelberman RH. A new provocative test for carpal tunnel syndrome. Assessment of wrist flexion and nerve compression. J Bone Joint Surg Br. 1998;80:493–8.

    CAS  PubMed  Google Scholar 

  115. Vogt T. Median-ulnar motor latency difference in the diagnosis of CTS. Zeitschr Elektroenzephalogr Diagn verwandte Gebiete. 1995;26:141–5.

    Google Scholar 

  116. Glowacki KA, Breen CJ, Sachar K, Weiss AP. Electrodiagnostic testing and carpal tunnel release outcome. J Hand Surg [Am]. 1996;21:117–21.

    CAS  Google Scholar 

  117. Padula L. A useful electrophysiologic parameter for diagnosis of CTS. Muscle Nerve. 1995;19:48–53.

    Google Scholar 

  118. Verghese J, Galanopoulou AS, Herskovitz S. Autonomic dysfunction in idiopathic carpal tunnel syndrome. Muscle Nerve. 2000;23:1209–13.

    CAS  PubMed  Google Scholar 

  119. Golovchinsky V. Frequency of ulnar-to-median nerve anastomosis revisited. Electromyogr Clin Neurophysiol. 1995;35:67–8.

    CAS  PubMed  Google Scholar 

  120. Szabo RM, Gelberman RH. The pathophysiology of nerve entrapment syndromes. J Hand Surg [Am]. 1987;12:880–4.

    CAS  Google Scholar 

  121. Kiuru MJ, Pihlajamaki HK, Ahovuo JA. Fatigue stress injuries of the pelvic bones and proximal femur: evaluation with MR imaging. Eur Radiol. 2003;13:605–11.

    PubMed  Google Scholar 

  122. Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin N Am. 2003;32:25–38.

    CAS  Google Scholar 

  123. Genser-Strobl B, Sora MC. Potential of P40 plastination for morphometric hip measurements. Surg Radiol Anat. 2005;27:147–51.

    CAS  PubMed  Google Scholar 

  124. Wang SC, Brede C, Lange D, et al. Gender differences in hip anatomy: possible implications for injury tolerance in frontal collisions. Annu Proc Assoc Adv Automot Med. 2004;48:287–301.

    PubMed  PubMed Central  Google Scholar 

  125. Igbigbi PS. Collo-diaphysial angle of the femur in East African subjects. Clin Anat. 2003;16:416–9.

    CAS  PubMed  Google Scholar 

  126. Beck TJ, Ruff CB, Scott WW Jr, Plato CC, Tobin JD, Quan CA. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int. 1992;50:24–9.

    CAS  PubMed  Google Scholar 

  127. Crabtree N, Lunt M, Holt G, et al. Hip geometry, bone mineral distribution, and bone strength in European men and women: the EPOS study. Bone. 2000;27:151–9.

    CAS  PubMed  Google Scholar 

  128. Korpelainen R, Orava S, Karpakka J, Siira P, Hulkko A. Risk factors for recurrent stress fractures in athletes. Am J Sports Med. 2001;29:304–10.

    CAS  PubMed  Google Scholar 

  129. Curtin BM, Fehring TK. Bisphosphonate fractures as a cause of painful total hip arthroplasty. Orthopedics. 2011;34:e939–44.

    PubMed  Google Scholar 

  130. Lo JC, Huang SY, Lee GA, et al. Clinical correlates of atypical femoral fracture. Bone. 2012;51:181–4.

    PubMed  Google Scholar 

  131. Yoon RS, Hwang JS, Beebe KS. Long-term bisphosphonate usage and subtrochanteric insufficiency fractures: a cause for concern? J Bone Joint Surg Br. 2011;93:1289–95.

    CAS  PubMed  Google Scholar 

  132. Schilcher J, Michaelsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft. N Engl J Med. 2011;364:1728–37.

    CAS  PubMed  Google Scholar 

  133. Horii M, Kubo T, Inoue S, Kim WC. Coverage of the femoral head by the acetabular labrum in dysplastic hips: quantitative analysis with radial MR imaging. Acta Orthop Scand. 2003;74:287–92.

    PubMed  Google Scholar 

  134. Seldes RM, Tan V, Hunt J, Katz M, Winiarsky R, Fitzgerald RH Jr. Anatomy, histologic features, and vascularity of the adult acetabular labrum. Clin Orthop Relat Res. 2001;382:232–40.

    Google Scholar 

  135. Ferguson SJ, Bryant JT, Ganz R, Ito K. An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech. 2003;36:171–8.

    CAS  PubMed  Google Scholar 

  136. Narvani AA, Tsiridis E, Tai CC, Thomas P. Acetabular labrum and its tears. Br J Sports Med. 2003;37:207–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kelly BT, Shapiro GS, Digiovanni CW, Buly RL, Potter HG, Hannafin JA. Vascularity of the hip labrum: a cadaveric investigation. Arthroscopy. 2005;21:3–11.

    PubMed  Google Scholar 

  138. Stiris MG. Magnetic resonance arthrography of the hip joint in patients with suspected rupture of labrum acetabulare. Tidsskr Nor Laegeforen. 2001;121:698–700.

    CAS  PubMed  Google Scholar 

  139. Ishiko T, Naito M, Moriyama S. Tensile properties of the human acetabular labrum-the first report. J Orthop Res. 2005;23:1448–53.

    PubMed  Google Scholar 

  140. McCarthy JC, Lee JA. Acetabular dysplasia: a paradigm of arthroscopic examination of chondral injuries. Clin Orthop Relat Res. 2002;405:122–8.

    Google Scholar 

  141. Leunig M, Sledge JB, Gill TJ, Ganz R. Traumatic labral avulsion from the stable rim: a constant pathology in displaced transverse acetabular fractures. Arch Orthop Trauma Surg. 2003;123:392–5.

    PubMed  Google Scholar 

  142. Mintz DN, Hooper T, Connell D, Buly R, Padgett DE, Potter HG. Magnetic resonance imaging of the hip: detection of labral and chondral abnormalities using noncontrast imaging. Arthroscopy. 2005;21:385–93.

    PubMed  Google Scholar 

  143. Ito K, Minka MA, Leunig M, Werlen S, Ganz R. Femoroacetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br. 2001;83:171–6.

    CAS  PubMed  Google Scholar 

  144. Kappe T, Kocak T, Bieger R, Reichel H, Fraitzl CR. Radiographic risk factors for labral lesions in femoroacetabular impingement. Clin Orthop Relat Res. 2011;469:3241–7.

    PubMed  PubMed Central  Google Scholar 

  145. Mosher TJ, Collins CM, Smith HE, et al. Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging. 2004;19:323–8.

    PubMed  Google Scholar 

  146. Csintalan RP, Schulz MM, Woo J, McMahon PJ, Lee TQ. Gender differences in patellofemoral joint biomechanics. Clin Orthop Relat Res. 2002;402:260–9.

    Google Scholar 

  147. Besier TF, Draper CE, Gold GE, Beaupre GS, Delp SL. Patellofemoral joint contact area increases with knee flexion and weight-bearing. J Orthop Res. 2005;23:345–50.

    PubMed  Google Scholar 

  148. Souza RB, Powers CM. Predictors of hip internal rotation during running: an evaluation of hip strength and femoral structure in women with and without patellofemoral pain. Am J Sports Med. 2009;37:579–87.

    PubMed  Google Scholar 

  149. Cowan SM, Crossley KM. Does gender influence neuromotor control of the knee and hip? J Electromyogr Kinesiol. 2009;19:276–82.

    PubMed  Google Scholar 

  150. Arendt E, Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med. 1995;23:694–701.

    CAS  PubMed  Google Scholar 

  151. Fayad LM, Parellada JA, Parker L, Schweitzer ME. MR imaging of anterior cruciate ligament tears: is there a gender gap? Skelet Radiol. 2003;32:639–46.

    Google Scholar 

  152. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23:573–8.

    CAS  PubMed  Google Scholar 

  153. Rozzi SL, Lephart SM, Gear WS, Fu FH. Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med. 1999;27:312–9.

    CAS  PubMed  Google Scholar 

  154. Muneta T, Takakuda K, Yamamoto H. Intercondylar notch width and its relation to the configuration and cross-sectional area of the anterior cruciate ligament. A cadaveric knee study. Am J Sports Med. 1997;25:69–72.

    CAS  PubMed  Google Scholar 

  155. Charlton WP, St John TA, Ciccotti MG, Harrison N, Schweitzer M. Differences in femoral notch anatomy between men and women: a magnetic resonance imaging study. Am J Sports Med. 2002;30:329–33.

    PubMed  Google Scholar 

  156. Sbriccoli P, Solomonow M, Zhou BH, Lu Y, Sellards R. Neuromuscular response to cyclic loading of the anterior cruciate ligament. Am J Sports Med. 2005;33:543–51.

    PubMed  Google Scholar 

  157. Murshed KA, Cicekcibasi AE, Karabacakoglu A, Seker M, Ziylan T. Distal femur morphometry: a gender and bilateral comparative study using magnetic resonance imaging. Surg Radiol Anat. 2005;27:108–12.

    PubMed  Google Scholar 

  158. van Eck CF, Martins CA, Vyas SM, Celentano U, van Dijk CN, Fu FH. Femoral intercondylar notch shape and dimensions in ACL-injured patients. Knee Surg Sports Traumatol Arthrosc. 2010;18:1257–62.

    PubMed  Google Scholar 

  159. Hoshino Y, Wang JH, Lorenz S, Fu FH, Tashman S. Gender difference of the femoral kinematics axis location and its relation to anterior cruciate ligament injury: a 3D-CT study. Knee Surg Sports Traumatol Arthrosc. 2012;20:1282–8.

    PubMed  Google Scholar 

  160. Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM. Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med. 2012;40:32–40.

    PubMed  Google Scholar 

  161. Hohmann E, Bryant A, Reaburn P, Tetsworth K. Is there a correlation between posterior tibial slope and non-contact anterior cruciate ligament injuries? Knee Surg Sports Traumatol Arthrosc. 2011;19(Suppl 1):S109–14.

    PubMed  Google Scholar 

  162. Loudon JK, Jenkins W, Loudon KL. The relationship between static posture and ACL injury in female athletes. J Orthop Sports Phys Ther. 1996;24:91–7.

    CAS  PubMed  Google Scholar 

  163. Livingston LA, Mandigo JL. Bilateral Q angle asymmetry and anterior knee pain syndrome. Clin Biomech (Bristol, Avon). 1999;14:7–13.

    CAS  PubMed  Google Scholar 

  164. Stuberg W, Temme J, Kaplan P, Clarke A, Fuchs R. Measurement of tibial torsion and thigh-foot angle using goniometry and computed tomography. Clin Orthop Relat Res. 1991;272:208–12.

    Google Scholar 

  165. Trimble MH, Bishop MD, Buckley BD, Fields LC, Rozea GD. The relationship between clinical measurements of lower extremity posture and tibial translation. Clin Biomech (Bristol, Avon). 2002;17:286–90.

    PubMed  Google Scholar 

  166. McNair PJ, Marshall RN. Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints. Arch Phys Med Rehabil. 1994;75:584–9.

    CAS  PubMed  Google Scholar 

  167. McLean SG, Lipfert SW, van den Bogert AJ. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc. 2004;36:1008–16.

    PubMed  Google Scholar 

  168. Kernozek TW, Torry MR, Van Hoof H, Cowley H, Tanner S. Gender differences in frontal and sagittal plane biomechanics during drop landings. Med Sci Sports Exerc. 2005;37:1003–12.

    PubMed  Google Scholar 

  169. Pollard CD, Davis IM, Hamill J. Influence of gender on hip and knee mechanics during a randomly cued cutting maneuver. Clin Biomech (Bristol, Avon). 2004;19:1022–31.

    PubMed  Google Scholar 

  170. Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999;27:699–706.

    CAS  PubMed  Google Scholar 

  171. Ford KR, Myer GD, Toms HE, Hewett TE. Gender differences in the kinematics of unanticipated cutting in young athletes. Med Sci Sports Exerc. 2005;37:124–9.

    PubMed  Google Scholar 

  172. Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24:765–73.

    CAS  PubMed  Google Scholar 

  173. Barber-Westin SD, Noyes FR, Galloway M. Jump-land characteristics and muscle strength development in young athletes: a gender comparison of 1140 athletes 9 to 17 years of age. Am J Sports Med. 2006;34:375–84.

    PubMed  Google Scholar 

  174. Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech (Bristol, Avon). 2006;21:33–40.

    PubMed  Google Scholar 

  175. Joseph MF, Rahl M, Sheehan J, et al. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task. Am J Sports Med. 2011;39:1517–21.

    PubMed  Google Scholar 

  176. Ramesh R, Von Arx O, Azzopardi T, Schranz PJ. The risk of anterior cruciate ligament rupture with generalised joint laxity. J Bone Joint Surg Br. 2005;87:800–3.

    CAS  PubMed  Google Scholar 

  177. Hollman JH, Deusinger RH, Van Dillen LR, Matava MJ. Gender differences in surface rolling and gliding kinematics of the knee. Clin Orthop Relat Res. 2003;413:208–21.

    Google Scholar 

  178. Wojtys EM, Ashton-Miller JA, Huston LJ. A gender-related difference in the contribution of the knee musculature to sagittal-plane shear stiffness in subjects with similar knee laxity. J Bone Joint Surg Am. 2002;84-A:10–6.

    Google Scholar 

  179. Beckett ME, Massie DL, Bowers KD, Stoll DA. Incidence of hyperpronation in the ACL injured knee: a clinical perspective. J Athl Train. 1992;27:58–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Chappell JD, Yu B, Kirkendall DT, Garrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30:261–7.

    PubMed  Google Scholar 

  181. Sigward SM, Powers CM. The influence of gender on knee kinematics, kinetics and muscle activation patterns during side-step cutting. Clin Biomech (Bristol, Avon). 2006;21:41–8.

    PubMed  Google Scholar 

  182. McLean SG, Huang X, van den Bogert AJ. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech (Bristol, Avon). 2005;20:863–70.

    PubMed  Google Scholar 

  183. Granata KP, Padua DA, Wilson SE. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol. 2002;12:127–35.

    CAS  PubMed  Google Scholar 

  184. Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard SJ. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin Biomech (Bristol, Avon). 2003;18:662–9.

    PubMed  Google Scholar 

  185. Besier TF, Lloyd DG, Ackland TR. Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sports Exerc. 2003;35:119–27.

    PubMed  Google Scholar 

  186. Fagenbaum R, Darling WG. Jump landing strategies in male and female college athletes and the implications of such strategies for anterior cruciate ligament injury. Am J Sports Med. 2003;31:233–40.

    PubMed  Google Scholar 

  187. Ahmad CS, Clark AM, Heilmann N, Schoeb JS, Gardner TR, Levine WN. Effect of gender and maturity on quadriceps-to-hamstring strength ratio and anterior cruciate ligament laxity. Am J Sports Med. 2006;34:370–4.

    PubMed  Google Scholar 

  188. da Fonseca ST, Vaz DV, de Aquino CF, Bricio RS. Muscular co-contraction during walking and landing from a jump: comparison between genders and influence of activity level. J Electromyogr Kinesiol. 2006;16:273–80.

    PubMed  Google Scholar 

  189. Padua DA, Carcia CR, Arnold BL, Granata KP. Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J Mot Behav. 2005;37:111–25.

    PubMed  Google Scholar 

  190. Hurd WJ, Chmielewski TL, Snyder-Mackler L. Perturbation-enhanced neuromuscular training alters muscle activity in female athletes. Knee Surg Sports Traumatol Arthrosc. 2006;14:60–9.

    PubMed  Google Scholar 

  191. Myer GD, Ford KR, Hewett TE. The effects of gender on quadriceps muscle activation strategies during a maneuver that mimics a high ACL injury risk position. J Electromyogr Kinesiol. 2005;15:181–9.

    PubMed  Google Scholar 

  192. Ebben WP, Fauth ML, Petushek EJ, et al. Gender-based analysis of hamstring and quadriceps muscle activation during jump landings and cutting. J Strength Cond Res. 2010;24:408–15.

    PubMed  Google Scholar 

  193. Wojtys EM, Huston LJ, Schock HJ, Boylan JP, Ashton-Miller JA. Gender differences in muscular protection of the knee in torsion in size-matched athletes. J Bone Joint Surg Am. 2003;85-A:782–9.

    Google Scholar 

  194. Stern A, Kuenze C, Herman D, Sauer LD, Hart JM. A gender comparison of central and peripheral neuromuscular function after exercise. J Sport Rehabil. 2011;21(3):209–17.

    PubMed  Google Scholar 

  195. Chu D, LeBlanc R, D’Ambrosia P, D’Ambrosia R, Baratta RV, Solomonow M. Neuromuscular disorder in response to anterior cruciate ligament creep. Clin Biomech (Bristol, Avon). 2003;18:222–30.

    PubMed  Google Scholar 

  196. Slauterbeck JR, Fuzie SF, Smith MP, et al. The menstrual cycle, sex hormones, and anterior cruciate ligament injury. J Athl Train. 2002;37:275–8.

    PubMed  PubMed Central  Google Scholar 

  197. Liu SH, Al Shaikh R, Panossian V, et al. Primary immunolocalization of estrogen and progesterone target cells in the human anterior cruciate ligament. J Orthop Res. 1996;14:526–33.

    CAS  PubMed  Google Scholar 

  198. Slauterbeck JR, Hardy DM. Sex hormones and knee ligament injuries in female athletes. Am J Med Sci. 2001;322:196–9.

    CAS  PubMed  Google Scholar 

  199. Bell DR, Blackburn JT, Norcorss MF, et al. Estrogen and muscle stiffness have a negative relationship in females. Knee Surg Sports Traumatol Arthrosc. 2012;20:361–7.

    PubMed  Google Scholar 

  200. Deie M, Sakamaki Y, Sumen Y, Urabe Y, Ikuta Y. Anterior knee laxity in young women varies with their menstrual cycle. Int Orthop. 2002;26:154–6.

    PubMed  PubMed Central  Google Scholar 

  201. Heir T. Musculoskeletal injuries in officer training: one-year follow-up. Mil Med. 1998;163:229–33.

    CAS  PubMed  Google Scholar 

  202. Knobloch K, Schreibmueller L, Kraemer R, Jagodzinski M, Vogt PM, Redeker J. Gender and eccentric training in Achilles mid-portion tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2010;18:648–55.

    PubMed  Google Scholar 

  203. Wunderlich RE, Cavanagh PR. Gender differences in adult foot shape: implications for shoe design. Med Sci Sports Exerc. 2001;33:605–11.

    CAS  PubMed  Google Scholar 

  204. Gilmour JC, Burns Y. The measurement of the medial longitudinal arch in children. Foot Ankle Int. 2001;22:493–8.

    CAS  PubMed  Google Scholar 

  205. Michelson JD, Durant DM, McFarland E. The injury risk associated with pes planus in athletes. Foot Ankle Int. 2002;23:629–33.

    CAS  PubMed  Google Scholar 

  206. Hosea TM, Carey CC, Harrer MF. The gender issue: epidemiology of ankle injuries in athletes who participate in basketball. Clin Orthop Relat Res. 2000;372:45–9.

    Google Scholar 

  207. Beynnon BD, Renstrom PA, Alosa DM, Baumhauer JF, Vacek PM. Ankle ligament injury risk factors: a prospective study of college athletes. J Orthop Res. 2001;19:213–20.

    CAS  PubMed  Google Scholar 

  208. Wilson EL, Madigan ML. Effects of fatigue and gender on peroneal reflexes elicited by sudden ankle inversion. J Electromyogr Kinesiol. 2007;17:160–6.

    PubMed  Google Scholar 

  209. Sugimoto K, Takakura Y, Tohno Y, Kumai T, Kawate K, Kadono K. Cartilage thickness of the talar dome. Arthroscopy. 2005;21:401–4.

    PubMed  Google Scholar 

  210. Hyer CF, Philbin TM, Berlet GC, Lee TH. The obliquity of the first metatarsal base. Foot Ankle Int. 2004;25:728–32.

    PubMed  Google Scholar 

  211. Hart DA, Kydd A, Reno C. Gender and pregnancy affect neuropeptide responses of the rabbit Achilles tendon. Clin Orthop Relat Res. 1999;365:237–46.

    Google Scholar 

  212. Wang YT, Pascoe DD, Kim CK, Xu D. Force patterns of heel strike and toe off on different heel heights in normal walking. Foot Ankle Int. 2001;22:486–92.

    CAS  PubMed  Google Scholar 

  213. Haims AH, Schweitzer ME, Patel RS, Hecht P, Wapner KL. MR imaging of the Achilles tendon: overlap of findings in symptomatic and asymptomatic individuals. Skelet Radiol. 2000;29:640–5.

    CAS  Google Scholar 

  214. Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H. Elastic properties of human Achilles tendon are correlated to muscle strength. J Appl Physiol. 2005;99:665–9.

    PubMed  Google Scholar 

  215. Rezcallah AT, Xu R, Ebraheim NA, Jackson T. Axial computed tomography of the pedicle in the lower cervical spine. Am J Orthop. 2001;30:59–61.

    CAS  PubMed  Google Scholar 

  216. Xu R, Burgar A, Ebraheim NA, Yeasting RA. The quantitative anatomy of the laminas of the spine. Spine. 1999;24:107–13.

    CAS  PubMed  Google Scholar 

  217. Lim JK, Wong HK. Variation of the cervical spinal Torg ratio with gender and ethnicity. Spine J. 2004;4:396–401.

    CAS  PubMed  Google Scholar 

  218. Hukuda S, Kojima Y. Sex discrepancy in the canal/body ratio of the cervical spine implicating the prevalence of cervical myelopathy in men. Spine. 2002;27:250–3.

    PubMed  Google Scholar 

  219. Pettersson K, Karrholm J, Toolanen G, Hildingsson C. Decreased width of the spinal canal in patients with chronic symptoms after whiplash injury. Spine. 1995;20:1664–7.

    CAS  PubMed  Google Scholar 

  220. Versteegen GJ, Kingma J, Meijler WJ, ten Duis HJ. Neck sprain after motor vehicle accidents in drivers and passengers. Eur Spine J. 2000;9:547–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Suissa S. Risk factors of poor prognosis after whiplash injury. Pain Res Manag. 2003;8:69–75.

    PubMed  Google Scholar 

  222. Hendriks EJ, Scholten-Peeters GG, van der Windt DA, Neeleman-van der Steen CW, Oostendorp RA, Verhagen AP. Prognostic factors for poor recovery in acute whiplash patients. Pain. 2005;114:408–16.

    PubMed  Google Scholar 

  223. Siegmund GP, Sanderson DJ, Myers BS, Inglis JT. Awareness affects the response of human subjects exposed to a single whiplash-like perturbation. Spine. 2003;28:671–9.

    PubMed  Google Scholar 

  224. Yoganandan N, Knowles SA, Maiman DJ, Pintar FA. Anatomic study of the morphology of human cervical facet joint. Spine. 2003;28:2317–23.

    PubMed  Google Scholar 

  225. Stemper BD, Yoganandan N, Pintar FA. Gender- and region-dependent local facet joint kinematics in rear impact: implications in whiplash injury. Spine. 2004;29:1764–71.

    PubMed  Google Scholar 

  226. Truumees E, Demetropoulos CK, Yang KH, Herkowitz HN. Failure of human cervical endplates: a cadaveric experimental model. Spine. 2003;28:2204–8.

    PubMed  Google Scholar 

  227. Ryan SD, Fried LP. The impact of kyphosis on daily functioning. J Am Geriatr Soc. 1997;45:1479–86.

    CAS  PubMed  Google Scholar 

  228. Fon GT, Pitt MJ, Thies AC Jr. Thoracic kyphosis: range in normal subjects. AJR Am J Roentgenol. 1980;134:979–83.

    CAS  PubMed  Google Scholar 

  229. Widhe T. Spine: posture, mobility and pain. A longitudinal study from childhood to adolescence. Eur Spine J. 2001;10:118–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Chiu YL, Huang TJ, Hsu RW. Curve patterns and etiologies of scoliosis: analysis in a university hospital clinic in Taiwan. Changgeng Yi Xue Za Zhi. 1998;21:421–8.

    CAS  PubMed  Google Scholar 

  231. Payne WK III, Ogilvie JW, Resnick MD, Kane RL, Transfeldt EE, Blum RW. Does scoliosis have a psychological impact and does gender make a difference? Spine. 1997;22:1380–4.

    PubMed  Google Scholar 

  232. Soucacos PN, Zacharis K, Soultanis K, Gelalis J, Xenakis T, Beris AE. Risk factors for idiopathic scoliosis: review of a 6-year prospective study. Orthopedics. 2000;23:833–8.

    CAS  PubMed  Google Scholar 

  233. Axenovich TI, Zaidman AM, Zorkoltseva IV, Tregubova IL, Borodin PM. Segregation analysis of idiopathic scoliosis: demonstration of a major gene effect. Am J Med Genet. 1999;86:389–94.

    CAS  PubMed  Google Scholar 

  234. Loncar-Dusek M, Pecina M, Prebeg Z. A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop Relat Res. 1991;270:278–2.

    Google Scholar 

  235. Ramirez N, Johnston CE, Browne RH. The prevalence of back pain in children who have idiopathic scoliosis. J Bone Joint Surg Am. 1997;79:364–8.

    CAS  PubMed  Google Scholar 

  236. Ugwonali OF, Lomas G, Choe JC, et al. Effect of bracing on the quality of life of adolescents with idiopathic scoliosis. Spine J. 2004;4:254–60.

    PubMed  Google Scholar 

  237. Bunge EM, Juttmann RE, de Kleuver M, van Biezen FC, de Koning HJ. Health-related quality of life in patients with adolescent idiopathic scoliosis after treatment: short-term effects after brace or surgical treatment. Eur Spine J. 2006;16(1):83–9.

    PubMed  PubMed Central  Google Scholar 

  238. Cheng WC, Yang RS, Huey-Jen HS, Chieng PU, Tsai KS. Effects of gender and age differences on the distribution of bone content in the third lumbar vertebra. Spine. 2001;26:964–8.

    CAS  PubMed  Google Scholar 

  239. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Age- and gender-related differences in vertebral bone mass, density, and strength. J Bone Miner Res. 1999;14:1394–403.

    CAS  PubMed  Google Scholar 

  240. Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, Goodman WG. Gender differences in vertebral sizes in adults: biomechanical implications. Radiology. 1994;190:678–82.

    CAS  PubMed  Google Scholar 

  241. Gilsanz V, Boechat MI, Roe TF, Loro ML, Sayre JW, Goodman WG. Gender differences in vertebral body sizes in children and adolescents. Radiology. 1994;190:673–7.

    CAS  PubMed  Google Scholar 

  242. Naganathan V, Sambrook P. Gender differences in volumetric bone density: a study of opposite-sex twins. Osteoporos Int. 2003;14:564–9.

    PubMed  Google Scholar 

  243. Korovessis P, Koureas G, Papazisis Z. Correlation between backpack weight and way of carrying, sagittal and frontal spinal curvatures, athletic activity, and dorsal and low back pain in schoolchildren and adolescents. J Spinal Disord Tech. 2004;17:33–40.

    PubMed  Google Scholar 

  244. Gruber HE, Norton HJ, Leslie K, Hanley EN Jr. Clinical and demographic prognostic indicators for human disc cell proliferation in vitro: pilot study. Spine. 2001;26:2323–7.

    CAS  PubMed  Google Scholar 

  245. Iguchi T, Wakami T, Kurihara A, Kasahara K, Yoshiya S, Nishida K. Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis. J Spinal Disord Tech. 2002;15:93–9.

    PubMed  Google Scholar 

  246. Masharawi Y, Rothschild B, Salame K, Dar G, Peleg S, Hershkovitz I. Facet tropism and interfacet shape in the thoracolumbar vertebrae: characterization and biomechanical interpretation. Spine. 2005;30:E281–92.

    PubMed  Google Scholar 

  247. Norton BJ, Sahrmann SA, Van Dillen FL. Differences in measurements of lumbar curvature related to gender and low back pain. J Orthop Sports Phys Ther. 2004;34:524–34.

    PubMed  Google Scholar 

  248. O’Sullivan P, Dankaerts W, Burnett A, et al. Lumbopelvic kinematics and trunk muscle activity during sitting on stable and unstable surfaces. J Orthop Sports Phys Ther. 2006;36:19–25.

    PubMed  Google Scholar 

  249. Marras WS, Jorgensen MJ, Granata KP, Wiand B. Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI. Clin Biomech (Bristol, Avon). 2001;16:38–46.

    CAS  PubMed  Google Scholar 

  250. Ng JK, Richardson CA, Kippers V, Parnianpour M. Relationship between muscle fiber composition and functional capacity of back muscles in healthy subjects and patients with back pain. J Orthop Sports Phys Ther. 1998;27:389–402.

    CAS  PubMed  Google Scholar 

  251. Marras WS, Davis KG, Jorgensen M. Spine loading as a function of gender. Spine. 2002;27:2514–20.

    PubMed  Google Scholar 

  252. Granata KP, Orishimo KF. Response of trunk muscle coactivation to changes in spinal stability. J Biomech. 2001;34:1117–23.

    CAS  PubMed  Google Scholar 

  253. Granata KP, Rogers E, Moorhouse K. Effects of static flexion-relaxation on paraspinal reflex behavior. Clin Biomech (Bristol, Avon). 2005;20:16–24.

    PubMed  Google Scholar 

  254. Brown MD, Holmes DC, Heiner AD, Wehman KF. Intraoperative measurement of lumbar spine motion segment stiffness. Spine. 2002;27:954–8.

    PubMed  Google Scholar 

  255. Cook C, Brismee JM, Sizer PS Jr. Subjective and objective descriptors of clinical lumbar spine instability: a Delphi study. Man Ther. 2006;11:11–21.

    PubMed  Google Scholar 

  256. Bowen V, Cassidy JD. Macroscopic and microscopic anatomy of the sacroiliac joint from embryonic life until the eighth decade. Spine. 1981;6:620–8.

    CAS  PubMed  Google Scholar 

  257. Lin WY, Wang SJ. Influence of age and gender on quantitative sacroiliac joint scintigraphy. J Nucl Med. 1998;39:1269–72.

    CAS  PubMed  Google Scholar 

  258. Faflia CP, Prassopoulos PK, Daskalogiannaki ME, Gourtsoyiannis NC. Variation in the appearance of the normal sacroiliac joint on pelvic CT. Clin Radiol. 1998;53:742–6.

    CAS  PubMed  Google Scholar 

  259. Brooke R. The sacro-iliac joint. J Anat. 1924;58:299–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Brunner C, Kissling R, Jacob HA. The effects of morphology and histopathologic findings on the mobility of the sacroiliac joint. Spine. 1991;16:1111–7.

    CAS  PubMed  Google Scholar 

  261. Bellamy N, Park W, Rooney PJ. What do we know about the sacroiliac joint? Semin Arthritis Rheum. 1983;12:282–313.

    CAS  PubMed  Google Scholar 

  262. Sashin D. A critical analysis of the anatomy and the pathologic changes of the sacroiliac joints. J Bone Joint Surg. 1930;12:891–910.

    Google Scholar 

  263. Vleeming A, van Wingerden JP, Snijders CJ, Stoeckart R, Dijkstra PF, Stijnen T. Mobility in the SI-joints in the elderly: a kinematic and roentgenologic study. Clin Biomech (Bristol, Avon). 1992;7:170–8.

    CAS  PubMed  Google Scholar 

  264. Dar G, Peleg S, Masharawi Y, et al. Sacroiliac joint bridging: demographical and anatomical aspects. Spine. 2005;30:E429–32.

    PubMed  Google Scholar 

  265. Dreyfuss P, Dryer S, Griffin J, Hoffman J, Walsh N. Positive sacroiliac screening tests in asymptomatic adults. Spine. 1994;19:1138–43.

    CAS  PubMed  Google Scholar 

  266. Salsabili N, Valojerdy MR, Hogg DA. Variations in thickness of articular cartilage in the human sacroiliac joint. Clin Anat. 1995;8:388–90.

    CAS  PubMed  Google Scholar 

  267. Kristiansson P, Svardsudd K. Discriminatory power of tests applied in back pain during pregnancy. Spine. 1996;21:2337–43.

    CAS  PubMed  Google Scholar 

  268. Snijders CJ, Seroo JM, Snijder JGT, Hoedt HT. Change in form of the spine as a consequence of pregnancy. In Digest of the 11th Int Conf Med Biol Eng. Ottawa: Conference Committee; 1976, pp. 670–1.

    Google Scholar 

  269. Mens JM, Vleeming A, Stoeckart R, Stam HJ, Snijders CJ. Understanding peripartum pelvic pain. Implications of a patient survey Spine. 1996;21:1363–9.

    CAS  PubMed  Google Scholar 

  270. Rathmell JP, Viscomi CM, Bernstein IM. Managing pain during pregnancy and lactation. In: Raj P, editor. Practical management of pain. 3rd ed. St. Louis: Mosby, Inc; 2000. p. 196–211.

    Google Scholar 

  271. Gerlach UJ, Lierse W. Functional construction of the sacroiliac ligamentous apparatus. Acta Anat (Basel). 1992;144:97–102.

    CAS  PubMed  Google Scholar 

  272. Lee D. Biomechanics of the lumbo-pelvic-hip complex. An approach to the examination and treatment of the lumbo-pelvic-hip region. New York: Churchill Livingstone; 1999. p. 43–72.

    Google Scholar 

  273. Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Wingerden JP, Snijders CJ. The posterior layer of the thoracolumbar fascia. Its function in load transfer from spine to legs. Spine. 1995;20:753–8.

    CAS  PubMed  Google Scholar 

  274. Kapandji IA. The physiology of the joints. Edinburgh: Churchill Livingstone; 1974.

    Google Scholar 

  275. Williams PL. Gray’s anatomy. 38th ed. London: Churchill Livingstone; 1995.

    Google Scholar 

  276. Vleeming A, Pool-Goudzwaard AL, Hammudoghlu D, Stoeckart R, Snijders CJ, Mens JM. The function of the long dorsal sacroiliac ligament: its implication for understanding low back pain. Spine. 1996;21:556–62.

    CAS  PubMed  Google Scholar 

  277. Luk KD, Ho HC, Leong JC. The iliolumbar ligament. A study of its anatomy, development and clinical significance. J Bone Joint Surg Br. 1986;68:197–200.

    CAS  PubMed  Google Scholar 

  278. Pool-Goudzwaard AL, Kleinrensink GJ, Snijders CJ, Entius C, Stoeckart R. The sacroiliac part of the iliolumbar ligament. J Anat. 2001;199:457–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Steinke H, Hammer N, Slowik V, et al. Novel insights into the sacroiliac joint ligaments. Spine (Phila Pa 1976). 2010;35:257–63.

    PubMed  Google Scholar 

  280. Ostgaard HC. Assessment and treatment of low back pain in working pregnant women. Semin Perinatol. 1996;20:61–9.

    CAS  PubMed  Google Scholar 

  281. Damen L, Buyruk HM, Guler-Uysal F, Lotgering FK, Snijders CJ, Stam HJ. The prognostic value of asymmetric laxity of the sacroiliac joints in pregnancy-related pelvic pain. Spine. 2002;27:2820–4.

    PubMed  Google Scholar 

  282. Noren L, Ostgaard S, Johansson G, Ostgaard HC. Lumbar back and posterior pelvic pain during pregnancy: a 3-year follow-up. Eur Spine J. 2002;11:267–71.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mimi Zumwalt .

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    What may predispose women to OA earlier than men?

    1. (a)

      Differences in BMI

    2. (b)

      Differences in collagen

    3. (c)

      Differences in articular cartilage morphology

    4. (d)

      Differences in skeletal geometry

  2. 2.

    A decrease in what hormone leads to an increase in a woman’s predisposition for lateral elbow tendinosis?

    1. (a)

      Progesterone

    2. (b)

      Estrogen

    3. (c)

      Testosterone

    4. (d)

      Relaxin

  3. 3.

    What are some factors that predispose women to fractures of the femoral neck (hip fracture)?

    1. (a)

      Less acetabular depth/femoral head width

    2. (b)

      Smaller coxadiaphyseal angle

    3. (c)

      Decreased femoral neck strength (lower cross-sectional area)

    4. (d)

      All of the above

  4. 4.

    An increased valgus motion in the frontal plane during a landing or cutting maneuver may predispose female athletes to what injury?

    1. (a)

      ACL tear

    2. (b)

      MCL tear

    3. (c)

      Patellofemoral subluxation

    4. (d)

      Knee dislocation

  5. 5.

    What are thought to be reasons for increased mobility in the sacroiliac joint of females?

    1. (a)

      Hormonal fluctuations with the onset of menses/pregnancy

    2. (b)

      Structural/anatomical changes with aging

    3. (c)

      Both a & b

    4. (d)

      No associated instability with the peri-menopausal period

Answers

  1. 1.

    c

  2. 2.

    b

  3. 3.

    d

  4. 4.

    a

  5. 5.

    c

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrie, K.A., Burbank, K., Sizer, P.S., James, C.R., Zumwalt, M. (2023). Considerations of Sex Differences in Musculoskeletal Anatomy Between Males and Females. In: Robert-McComb, J.J., Zumwalt, M., Fernandez-del-Valle, M. (eds) The Active Female. Springer, Cham. https://doi.org/10.1007/978-3-031-15485-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15485-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15484-3

  • Online ISBN: 978-3-031-15485-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics