Skip to main content

Risk Factors of Developing COVID-19 and its Severe Course

  • Chapter
  • First Online:
Cardiovascular Complications of COVID-19

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 328 Accesses

Abstract

Since the outbreak of COVID-19 pandemic great efforts have been made in the identification of the possible determinants of a higher risk of getting COVID-19 and developing its severe clinical manifestations within several demographic factors and medical conditions. Among the latter ones, risk factors and markers of cardiovascular (CV) disease have been extensively studied along with CV disease-related comorbidities. Indeed, preliminary lines of evidence had been suggesting their potential pathophysiological role in predisposing to SARS-CoV-2 infection as well as in precipitating its evolution towards the most severe forms, thereby fueling scientific interest in the possible preventive/therapeutic activity against COVID-19 linked to drugs targeting CV disease risk.

The present chapter deals with risk factors of developing COVID-19 and its severe course focusing on different markers and risk factors of CV disease (i.e., age, sex, smoking, diabetes, obesity, hypertension, dyslipidemia, CKD, and some laboratory and instrumental parameters). Also, it summarizes current knowledge on the possible pathophysiological mechanisms underlying their relationship with COVID-19 prognosis as well as the potential preventive/therapeutic role against COVID-19 of strategies aimed at controlling CV disease risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Katzenschlager S, Zimmer AJ, Gottschalk C, Grafeneder J, Schmitz S, Kraker S, et al. Can we predict the severe course of COVID-19—a systematic review and meta-analysis of indicators of clinical outcome? PLoS One. 2021;16:e0255154.

    Article  CAS  Google Scholar 

  2. Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, et al. Population risk factors for severe disease and mortality in COVID-19: a global systematic review and meta-analysis. PLoS One. 2021;16:e0247461.

    Article  CAS  Google Scholar 

  3. Wolff D, Nee S, Hickey NS, Marschollek M. Risk factors for Covid-19 severity and fatality: a structured literature review. Infection. 2021;49:15–28.

    Article  CAS  Google Scholar 

  4. Collard D, Nurmohamed NS, Kaiser Y, Reeskamp LF, Dormans T, Moeniralam H, et al. Cardiovascular risk factors and COVID-19 outcomes in hospitalised patients: a prospective cohort study. BMJ Open. 2021;11:e045482.

    Article  Google Scholar 

  5. Silverio A, Di Maio M, Citro R, Esposito L, Iuliano G, Bellino M, et al. Cardiovascular risk factors and mortality in hospitalized patients with COVID-19: systematic review and meta-analysis of 45 studies and 18,300 patients. BMC Cardiovasc Disord. 2021;21:23.

    Article  CAS  Google Scholar 

  6. Shafi AMA, Shaikh SA, Shirke MM, Iddawela S, Harky A. Cardiac manifestations in COVID-19 patients-a systematic review. J Card Surg. 2020;35:1988–2008.

    Article  Google Scholar 

  7. Kollias A, Kyriakoulis KG, Lagou S, Kontopantelis E, Stergiou GS, Syrigos K. Venous thromboembolism in COVID-19: a systematic review and meta-analysis. Vasc Med. 2021;26:415–25.

    Article  CAS  Google Scholar 

  8. Ganjali S, Bianconi V, Penson PE, Pirro M, Banach M, Watts GF, et al. Commentary: statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metabolism. 2020;113:154375.

    Article  CAS  Google Scholar 

  9. Bianconi V, Violi F, Fallarino F, Pignatelli P, Sahebkar A, Pirro M. Is acetylsalicylic acid a safe and potentially useful choice for adult patients with COVID-19 ? Drugs. 2020;80:1383–96.

    Article  CAS  Google Scholar 

  10. Bae S, Kim SR, Kim MN, Shim WJ, Park SM. Impact of cardiovascular disease and risk factors on fatal outcomes in patients with COVID-19 according to age: a systematic review and meta-analysis. Heart. 2021;107:373–80.

    Article  CAS  Google Scholar 

  11. Kong KA, Jung S, Yu M, Park J, Kang IS. Association between cardiovascular risk factors and the severity of coronavirus disease 2019: Nationwide epidemiological study in Korea. Front Cardiovasc Med. 2021;8:732518.

    Article  CAS  Google Scholar 

  12. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19:141–54.

    Article  CAS  Google Scholar 

  13. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.

    Article  CAS  Google Scholar 

  14. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 2020;323:1239.

    Article  CAS  Google Scholar 

  15. Cohen JF, Korevaar DA, Matczak S, Chalumeau M, Allali S, Toubiana J. COVID-19–related fatalities and intensive-care-unit admissions by age groups in Europe: a meta-analysis. Front Med. 2021;7:1–5.

    Article  Google Scholar 

  16. Chai S, Li Y, Li X, Tan J, Abdelrahim MEA, Xu X. Effect of age of COVID-19 inpatient on the severity of the disease: a meta-analysis. Int J Clin Pract. 2021;75:e14640.

    Article  CAS  Google Scholar 

  17. Bonanad C, García-Blas S, Tarazona-Santabalbina F, Sanchis J, Bertomeu-González V, Fácila L, et al. The effect of age on mortality in patients with COVID-19: a meta-analysis with 611,583 subjects. J Am Med Dir Assoc. 2020;21:915–8.

    Article  Google Scholar 

  18. Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020;35:1123–38.

    Article  CAS  Google Scholar 

  19. Yanez ND, Weiss NS, Romand JA, Treggiari MM. COVID-19 mortality risk for older men and women. BMC Public Health. 2020;20:1–7.

    Article  Google Scholar 

  20. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1:253–60.

    Article  CAS  Google Scholar 

  21. Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the aging immune system. Nat Aging. 2021;1:769–82.

    Article  Google Scholar 

  22. Mak JKL, Kuja-Halkola R, Wang Y, Hägg S, Jylhävä J. Frailty and comorbidity in predicting community COVID-19 mortality in the U.K. Biobank: the effect of sampling. J Am Geriatr Soc. 2021;69:1128–39.

    Article  Google Scholar 

  23. D’ascanio M, Innammorato M, Pasquariello L, Pizzirusso D, Guerrieri G, Castelli S, et al. Age is not the only risk factor in COVID-19: the role of comorbidities and of long staying in residential care homes. BMC Geriatr. 2021;21:63.

    Article  Google Scholar 

  24. Bajaj V, Gadi N, Spihlman AP, Wu SC, Choi CH, Moulton VR. Aging, immunity, and COVID-19: how age influences the host immune response to coronavirus infections? Front Physiol. 2021;11:571416.

    Article  Google Scholar 

  25. Bianconi V, Mannarino MR, Bronzo P, Marini E, Pirro M. Time-related changes in sex distribution of COVID-19 incidence proportion in Italy. Heliyon. 2020;6:e05304.

    Article  CAS  Google Scholar 

  26. Jin JM, Bai P, He W, Wu F, Liu XF, Han DM, et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health. 2020;29(8):152.

    Article  Google Scholar 

  27. Rozenberg S, Vandromme J, Martin C. Are we equal in adversity? Does Covid-19 affect women and men differently? Maturitas. 2020;138:62–8.

    Article  CAS  Google Scholar 

  28. Galbadage T, Peterson BM, Awada J, Buck AS, Ramirez DA, Wilson J, et al. Systematic review and meta-analysis of sex-specific COVID-19 clinical outcomes. Front Med (Lausanne). 2020;7:348.

    Article  Google Scholar 

  29. https://globalhealth5050.org/the-sex-gender-and-covid-19-project/the-data-tracker/

  30. Brandi ML. Are sex hormones promising candidates to explain sex disparities in the COVID-19 pandemic? Rev Endocr Metab Disord. 2022;23(2):171–83.

    Article  CAS  Google Scholar 

  31. Brandi ML, Giustina A. Sexual dimorphism of coronavirus 19 morbidity and lethality. Trends Endocrinol Metab. 2020;31:918–27.

    Article  CAS  Google Scholar 

  32. Aksoyalp ZŞ, Nemutlu-Samur D. Sex-related susceptibility in coronavirus disease 2019 (COVID-19): proposed mechanisms. Eur J Pharmacol. 2021;912:174548.

    Article  CAS  Google Scholar 

  33. Tramontana F, Battisti S, Napoli N, Strollo R. Immuno-endocrinology of COVID-19: the key role of sex hormones. Front Endocrinol (Lausanne). 2021;12:726696.

    Article  Google Scholar 

  34. Bianconi V, Mannarino MR, Figorilli F, Schiaroli E, Cosentini E, Batori G, et al. Low brachial artery flow-mediated dilation predicts worse prognosis in hospitalized patients with COVID-19. J Clin Med. 2021;10:5456.

    Article  CAS  Google Scholar 

  35. Libby P, Lüscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41:3038–44.

    Article  CAS  Google Scholar 

  36. The Lancet. The gendered dimensions of COVID-19. Lancet. 2020;395:1168.

    CAS  Google Scholar 

  37. Wang Y, Hunt K, Nazareth I, Freemantle N, Petersen I. Do men consult less than women? An analysis of routinely collected UK general practice data. BMJ Open. 2013;3:e003320.

    Article  Google Scholar 

  38. Cataldo C, Masella R. Gender-related sociocultural differences and COVID-19: what influence on the effects of the pandemic? Epidemiol Prev. 2020;44:398–9.

    Google Scholar 

  39. Sudre CH, Murray B, Varsavsky T, Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27:626–31.

    Article  CAS  Google Scholar 

  40. Usman MS, Siddiqi TJ, Khan MS, Patel UK, Shahid I, Ahmed J, et al. Is there a smoker’s paradox in COVID-19? BMJ Evid Based Med. 2021;26:279–84.

    Article  Google Scholar 

  41. van Westen-Lagerweij NA, Meijer E, Meeuwsen EG, Chavannes NH, Willemsen MC, Croes EA. Are smokers protected against SARS-CoV-2 infection (COVID-19)? The origins of the myth. NPJ Prim Care Respir Med. 2021;31:10.

    Article  Google Scholar 

  42. Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Eur J Intern Med. 2020;75:107–8.

    Article  CAS  Google Scholar 

  43. Patanavanich R, Glantz SA. Smoking is associated with worse outcomes of COVID-19 particularly among younger adults: a systematic review and meta-analysis. BMC Public Health. 2021;21:1554.

    Article  CAS  Google Scholar 

  44. Mahamat-Saleh Y, Fiolet T, Rebeaud ME, Mulot M, Guihur A, El Fatouhi D, et al. Diabetes, hypertension, body mass index, smoking and COVID-19-related mortality: a systematic review and meta-analysis of observational studies. BMJ Open. 2021;11:e052777.

    Article  Google Scholar 

  45. Reddy RK, Charles WN, Sklavounos A, Dutt A, Seed PT, Khajuria A. The effect of smoking on COVID-19 severity: a systematic review and meta-analysis. J Med Virol. 2021;93(2):1045–56.

    Article  CAS  Google Scholar 

  46. Jiménez-Ruiz CA, López-Padilla D, Alonso-Arroyo A, Aleixandre-Benavent R, Solano-Reina S, de Granda-Orive JI. COVID-19 y tabaquismo: revisión sistemática y metaanálisis de la evidencia [COVID-19 and smoking: a systematic review and meta-analysis of the evidence]. Arch Bronconeumol. 2021;57:21–34.

    Article  Google Scholar 

  47. Hou H, Li Y, Zhang P, Wu J, Shi L, Xu J, et al. Smoking is independently associated with an increased risk for COVID-19 mortality: a systematic review and meta-analysis based on adjusted effect estimates. Nicotine Tob Res. 2021;23:1947–51.

    Article  CAS  Google Scholar 

  48. Clift AK, von Ende A, Tan PS, Sallis HM, Lindson N, Coupland CAC, et al. Smoking and COVID-19 outcomes: an observational and mendelian randomisation study using the UK biobank cohort. Thorax. 2022;77:65–73.

    Article  Google Scholar 

  49. Karanasos A, Aznaouridis K, Latsios G, Synetos A, Plitaria S, Tousoulis D, et al. Impact of smoking status on disease severity and mortality of hospitalized patients with COVID-19 infection: a systematic review and meta-analysis. Nicotine Tob Res. 2020;22:1657–9.

    Article  CAS  Google Scholar 

  50. Sohal SS, Eapen MS, Naidu VGM, Sharma P. IQOS exposure impairs human airway cell homeostasis: direct comparison with traditional cigarette and e-cigarette. ERJ Open Res. 2019;5:00159–2018.

    Article  Google Scholar 

  51. McFadden DD, Bornstein SL, Vassallo R, Salonen BR, Bhuiyan MN, Schroeder DR, et al. Symptoms COVID 19 positive vapers compared to COVID 19 positive non-vapers. J Prim Care Community Health. 2022;13:21501319211062672.

    Article  Google Scholar 

  52. Corrao S, Pinelli K, Vacca M, Raspanti M, Argano C. Type 2 diabetes mellitus and COVID-19: a narrative review. Front Endocrinol (Lausanne). 2021;12:609470.

    Article  Google Scholar 

  53. Hartmann-Boyce J, Rees K, Perring JC, Kerneis SA, Morris EM, Goyder C, et al. Risks of and from SARS-CoV-2 infection and COVID-19 in people with diabetes: a systematic review of reviews. Diabetes Care. 2021;44:2790–811.

    Article  CAS  Google Scholar 

  54. Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia - a systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020;14:395–403.

    Article  Google Scholar 

  55. Nandy K, Salunke A, Pathak SK, Pandey A, Doctor C, Puj K, et al. Coronavirus disease (COVID-19): a systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab Syndr. 2020;14:1017–25.

    Article  Google Scholar 

  56. Schlesinger S, Neuenschwander M, Lang A, Pafili K, Kuss O, Herder C, et al. Risk phenotypes of diabetes and association with COVID-19 severity and death: a living systematic review and meta-analysis. Diabetologia. 2021;64:1480–91.

    Article  CAS  Google Scholar 

  57. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, et al. Association of Blood Glucose Control and Outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020;31:1068–1077.e3.

    Article  CAS  Google Scholar 

  58. Holman N, Knighton P, Kar P, O'Keefe J, Curley M, Weaver A, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020;8:823–33.

    Article  CAS  Google Scholar 

  59. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–6.

    Article  CAS  Google Scholar 

  60. Landstra CP, de Koning EJP. COVID-19 and diabetes: understanding the interrelationship and risks for a severe course. Front Endocrinol (Lausanne). 2021;12:649525.

    Article  Google Scholar 

  61. Sun B, Huang S, Zhou J. Perspectives of antidiabetic drugs in diabetes with coronavirus infections. Front Pharmacol. 2021;11:592439.

    Article  Google Scholar 

  62. Chen Y, Yang D, Cheng B, Chen J, Peng A, Yang C, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care. 2020;43:1399–407.

    Article  CAS  Google Scholar 

  63. Yang J, Tian C, Chen Y, Zhu C, Chi H, Li J. Obesity aggravates COVID-19: an updated systematic review and meta-analysis. J Med Virol. 2021;93:2662–74.

    Article  CAS  Google Scholar 

  64. Reilev M, Kristensen KB, Pottegård A, Lund LC, Hallas J, Ernst MT, et al. Characteristics and predictors of hospitalization and death in the first 11 122 cases with a positive RT-PCR test for SARS-CoV-2 in Denmark: a nationwide cohort. Int J Epidemiol. 2020;49:1468–81.

    Article  Google Scholar 

  65. Huang Y, Lu Y, Huang YM, Wang M, Ling W, Sui Y, et al. Obesity in patients with COVID-19: a systematic review and meta-analysis. Metabolism. 2020;113:154378.

    Article  CAS  Google Scholar 

  66. Cao P, Song Y, Zhuang Z, Ran J, Xu L, Geng Y, et al. Obesity and COVID-19 in adult patients with diabetes. Diabetes. 2021;70:1061–9.

    Article  CAS  Google Scholar 

  67. Mohammad S, Aziz R, Al Mahri S, Malik SS, Haji E, Khan AH, et al. Obesity and COVID-19: what makes obese host so vulnerable? Immun Ageing. 2021;18:1.

    Article  CAS  Google Scholar 

  68. Hoong CWS, Hussain I, Aravamudan VM, Phyu EE, Lin JHX, Koh H. Obesity is associated with poor Covid-19 outcomes: a systematic review and meta-analysis. Horm Metab Res. 2021;53:85–93.

    Article  CAS  Google Scholar 

  69. Gao M, Piernas C, Astbury NM, Hippisley-Cox J, O’Rahilly S, Aveyard P, et al. Associations between body-mass index and COVID-19 severity in 6·9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021;9:350–9.

    Article  CAS  Google Scholar 

  70. Pranata R, Lim MA, Yonas E, Vania R, Lukito AA, Siswanto BB, et al. Body mass index and outcome in patients with COVID-19: a dose-response meta-analysis. Diabetes Metab. 2021;47:101178.

    Article  CAS  Google Scholar 

  71. Gao M, Wang Q, Piernas C, Astbury NM, Jebb SA, Holmes MV, et al. Associations between body composition, fat distribution and metabolic consequences of excess adiposity with severe COVID-19 outcomes: observational study and mendelian randomisation analysis. Int J Obes. 2022;1–8

    Google Scholar 

  72. Gammone MA, D’Orazio N. Review: obesity and COVID-19: a detrimental intersection. Front Endocrinol (Lausanne). 2021;12:652639.

    Article  Google Scholar 

  73. Poly TN, Islam MM, Yang HC, Lin MC, Jian WS, Hsu MH, et al. Obesity and mortality among patients diagnosed with COVID-19: a systematic review and meta-analysis. Front Med (Lausanne). 2021;8:620044.

    Article  Google Scholar 

  74. Gammone MA, D'Orazio N. COVID-19 and obesity: overlapping of two pandemics. Obes Facts. 2021;14:579–85.

    Article  CAS  Google Scholar 

  75. Sharma JR, Yadav UCS. COVID-19 severity in obese patients: potential mechanisms and molecular targets for clinical intervention. Obes Res Clin Pract. 2021;15:163–71.

    Article  Google Scholar 

  76. Michalakis K, Ilias I. SARS-CoV-2 infection and obesity: common inflammatory and metabolic aspects. Diabetes Metab Syndr. 2020;14:469–71.

    Article  Google Scholar 

  77. Aminian A, Tu C, Milinovich A, Wolski KE, Kattan MW, Nissen SE. Association of Weight Loss Achieved through Metabolic Surgery with Risk and Severity of COVID-19 infection. JAMA Surg. 2021:e216496.

    Google Scholar 

  78. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9. Erratum in: JAMA. 2021;325:1113

    Article  CAS  Google Scholar 

  79. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. China medical treatment expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20.

    Article  CAS  Google Scholar 

  80. Mubarik S, Liu X, Eshak ES, Liu K, Liu Q, Wang F, et al. The Association of Hypertension with the severity of and mortality from the COVID-19 in the early stage of the epidemic in Wuhan, China: a multicenter retrospective cohort study. Front Med (Lausanne). 2021;8:623608.

    Article  Google Scholar 

  81. Du Y, Zhou N, Zha W, Lv Y. Hypertension is a clinically important risk factor for critical illness and mortality in COVID-19: a meta-analysis. Nutr Metab Cardiovasc Dis. 2021;31:745–55.

    Article  CAS  Google Scholar 

  82. Chen J, Liu Y, Qin J, Ruan C, Zeng X, Xu A, et al. Hypertension as an independent risk factor for severity and mortality in patients with COVID-19: a retrospective study. Postgrad Med J. 2022;98(1161):515–22.

    Article  Google Scholar 

  83. Peng M, He J, Xue Y, Yang X, Liu S, Gong Z. Role of hypertension on the severity of COVID-19: a review. J Cardiovasc Pharmacol. 2021;78:e648–55.

    Article  CAS  Google Scholar 

  84. Işık F, Çap M, Akyüz A, Bilge Ö, Aslan B, İnci Ü, et al. The effect of resistant hypertension on in-hospital mortality in patients hospitalized with COVID-19. J Hum Hypertens. 2021;1–6

    Google Scholar 

  85. Ran J, Song Y, Zhuang Z, Han L, Zhao S, Cao P, et al. Blood pressure control and adverse outcomes of COVID-19 infection in patients with concomitant hypertension in Wuhan. China Hypertens Res. 2020;43:1267–76.

    Article  CAS  Google Scholar 

  86. Sheppard JP, Nicholson BD, Lee J, McGagh D, Sherlock J, Koshiaris C, et al. Association between blood pressure control and coronavirus disease 2019 outcomes in 45 418 symptomatic patients with hypertension: an observational cohort study. Hypertension. 2021;77:846–55.

    Article  CAS  Google Scholar 

  87. Momtazi-Borojeni AA, Banach M, Reiner Ž, Pirro M, Bianconi V, Al-Rasadi K, et al. Interaction between coronavirus S-protein and human ACE2: hints for exploring efficient therapeutic targets to treat COVID-19. Angiology. 2021;72:122–30.

    Article  CAS  Google Scholar 

  88. Imai Y, Kuba K, Penninger JM. The renin-angiotensin system in acute respiratory distress syndrome. Drug Discov Today Dis Mech. 2006;3:225–9.

    Article  Google Scholar 

  89. Ren L, Yu S, Xu W, Overton JL, Chiamvimonvat N, Thai PN. Lack of association of antihypertensive drugs with the risk and severity of COVID-19: a meta-analysis. J Cardiol. 2021;77:482–91.

    Article  Google Scholar 

  90. Santos CS, Morales CM, Álvarez ED, Castro CÁ, Robles AL, Sandoval TP. Determinants of COVID-19 disease severity in patients with underlying rheumatic disease. Clin Rheumatol. 2020;39:2789–96.

    Article  Google Scholar 

  91. Hariyanto TI, Kurniawan A. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr. 2020;14:1463–5.

    Article  Google Scholar 

  92. Choi GJ, Kim HM, Kang H. The potential role of dyslipidemia in COVID-19 severity: an umbrella review of systematic reviews. J Lipid Atheroscler. 2020;9:435–48.

    Article  CAS  Google Scholar 

  93. Liu Y, Pan Y, Yin Y, Chen W, Li X. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): a meta-analysis. Virol J. 2021;18:157.

    Article  CAS  Google Scholar 

  94. Masana L, Correig E, Ibarretxe D, Anoro E, Arroyo JA, Jericó C, et al. STACOV-XULA research group. Low HDL and high triglycerides predict COVID-19 severity. Sci Rep. 2021;11:7217.

    Article  CAS  Google Scholar 

  95. Yoshikawa M, Asaba K, Nakayama T. Estimating causal effects of atherogenic lipid-related traits on COVID-19 susceptibility and severity using a two-sample mendelian randomization approach. BMC Med Genet. 2021;14:269.

    CAS  Google Scholar 

  96. Surma S, Banach M, Lewek J. COVID-19 and lipids. The role of lipid disorders and statin use in the prognosis of patients with SARS-CoV-2 infection. Lipids Health Dis. 2021;20:141.

    Article  CAS  Google Scholar 

  97. Palacios-Rápalo SN, De Jesús-González LA, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, Martínez-Mier G, et al. Cholesterol-rich lipid rafts as platforms for SARS-CoV-2 entry. Front Immunol. 2021;12:796855.

    Article  Google Scholar 

  98. Trakaki A, Marsche G. Current understanding of the immunomodulatory activities of high-density lipoproteins. Biomedicine. 2021;9:587.

    CAS  Google Scholar 

  99. Fan J, Wang H, Ye G, Cao X, Xu X, Tan W, et al. Letter to the editor: low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019. Metabolism. 2020;107:154243.

    Article  CAS  Google Scholar 

  100. Wei X, Zeng W, Su J, Wan H, Yu X, Cao X, et al. Hypolipidemia is associated with the severity of COVID-19. J Clin Lipidol. 2020;14:297–304.

    Article  Google Scholar 

  101. D’Ardes D, Rossi I, Bucciarelli B, Allegra M, Bianco F, Sinjari B, et al. Metabolic changes in SARS-CoV-2 infection: clinical data and molecular hypothesis to explain alterations of lipid profile and thyroid function observed in COVID-19 patients. Life (Basel). 2021;11:860.

    Google Scholar 

  102. Lee W, Ahn JH, Park HH, Kim HN, Kim H, Yoo Y, et al. COVID-19-activated SREBP2 disturbs cholesterol biosynthesis and leads to cytokine storm. Signal Transduct Target Ther. 2020;5:186.

    Article  CAS  Google Scholar 

  103. Bellia A, Andreadi A, Giudice L, De Taddeo S, Maiorino A, D’Ippolito I, et al. Atherogenic dyslipidemia on admission is associated with poorer outcome in people with and without diabetes hospitalized for COVID-19. Diabetes Care. 2021;44:2149–57.

    Article  CAS  Google Scholar 

  104. Yue J, Xu H, Zhou Y, Liu W, Han X, Mao Q, et al. Dyslipidemia is related to mortality in critical patients with coronavirus disease 2019: a retrospective study. Front Endocrinol (Lausanne). 2021;12:611526.

    Article  Google Scholar 

  105. Zhao M, Luo Z, He H, Shen B, Liang J, Zhang J, et al. Decreased low-density lipoprotein cholesterol level indicates poor prognosis of severe and critical COVID-19 patients: a retrospective, single-center study. Front Med (Lausanne). 2021;8:585851.

    Article  Google Scholar 

  106. Lippi G, Szergyuk I, de Oliveira MHS, Benoit SW, Benoit JL, Favaloro EJ, et al. The role of lipoprotein(a) in coronavirus disease 2019 (COVID-19) with relation to development of severe acute kidney injury. J Thromb Thrombolysis. 2021;28:1–5.

    Google Scholar 

  107. Nurmohamed NS, Collard D, Reeskamp LF, Kaiser Y, Kroon J, Tromp TR, Amsterdam UMC Covid-19 biobank, van den Born B-JH, Coppens M, Vlaar APJ, Beudel M, van de Beek D, van Es N, Moriarty PM, Tsimikas S, Stroes ESG. Lipoprotein(a), venous thromboembolism and COVID-19: a pilot study. Atherosclerosis. 2022;341:43–9.

    Article  CAS  Google Scholar 

  108. Di Maio S, Lamina C, Coassin S, Forer L, Würzner R, Schönherr S, et al. Lipoprotein(a) and SARS-CoV-2 infections: susceptibility to infections, ischemic heart disease and thromboembolic events. J Intern Med. 2022;291:101–7.

    Article  Google Scholar 

  109. Moriarty PM, Gorby LK, Stroes ES, Kastelein JP, Davidson M, Tsimikas S. Lipoprotein(a) and its potential association with thrombosis and inflammation in COVID-19: a testable hypothesis. Curr Atheroscler Rep. 2020;22:48.

    Article  CAS  Google Scholar 

  110. Pirro M, Bianconi V, Paciullo F, Mannarino MR, Bagaglia F, Sahebkar A. Lipoprotein(a) and inflammation: a dangerous duet leading to endothelial loss of integrity. Pharmacol Res. 2017;119:178–87.

    Article  CAS  Google Scholar 

  111. Vahedian-Azimi A, Mohammadi SM, Banach M, Beni FH, Guest PC, Al-Rasadi K, et al. Improved COVID-19 outcomes following statin therapy: an updated systematic review and meta-analysis. Biomed Res Int. 2021;2021:1901772.

    Article  Google Scholar 

  112. Kow CS, Hasan SS. Meta-analysis of effect of statins in patients with COVID-19. Am J Cardiol. 2020;134:153–5.

    Article  CAS  Google Scholar 

  113. Feher M, Joy M, Munro N, Hinton W, Williams J, de Lusignan S. Fenofibrate as a COVID-19 modifying drug: laboratory success versus real-world reality. Atherosclerosis. 2021;339:55–6.

    Article  CAS  Google Scholar 

  114. Talasaz AH, Sadeghipour P, Aghakouchakzadeh M, Dreyfus I, Kakavand H, Ariannejad H, et al. Investigating lipid-modulating agents for prevention or treatment of COVID-19: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78:1635–54.

    Article  CAS  Google Scholar 

  115. Lin YC, Lai TS, Lin SL, Chen YM, Chu TS, Tu YK. Outcomes of coronavirus 2019 infection in patients with chronic kidney disease: a systematic review and meta-analysis. Ther Adv Chronic Dis. 2021;19(12):2040622321998860. https://doi.org/10.1177/2040622321998860.

    Article  CAS  Google Scholar 

  116. Rao A, Ranka S, Ayers C, Hendren N, Rosenblatt A, Alger HM, et al. Association of Kidney Disease with Outcomes in COVID-19: results from the American Heart Association COVID-19 cardiovascular disease registry. J Am Heart Assoc. 2021;10(12):e020910.

    Article  CAS  Google Scholar 

  117. Wang B, Luo Q, Zhang W, Yu S, Cheng X, Wang L, et al. The involvement of chronic kidney disease and acute kidney injury in disease severity and mortality in patients with COVID-19: a meta-analysis. Kidney Blood Press Res. 2021;46:17–30.

    Article  CAS  Google Scholar 

  118. Pranata R, Supriyadi R, Huang I, Permana H, Lim MA, Yonas E, et al. The association between chronic kidney disease and new onset renal replacement therapy on the outcome of COVID-19 patients: a meta-analysis. Clin Med Insights Circ Respir Pulm Med. 2020;14:1179548420959165.

    Article  Google Scholar 

  119. Brogan M, Ross MJ. The impact of chronic kidney disease on outcomes of patients with COVID-19 admitted to the intensive care unit. Nephron. 2022;146:67–71.

    Article  CAS  Google Scholar 

  120. Singh J, Malik P, Patel N, Pothuru S, Israni A, Chakinala RC, et al. Kidney disease and COVID-19 disease severity-systematic review and meta-analysis. Clin Exp Med. 2021:1–11.

    Google Scholar 

  121. Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594:259–64.

    Article  CAS  Google Scholar 

  122. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, Allweiss L, et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383:590–2.

    Article  Google Scholar 

  123. Santoriello D, Khairallah P, Bomback AS, Xu K, Kudose S, Batal I, et al. Postmortem kidney pathology findings in patients with COVID-19. J Am Soc Nephrol. 2020;31:2158–67.

    Article  CAS  Google Scholar 

  124. Zhu A, Zakusilo G, Lee MS, Kim J, Kim H, Ying X, et al. Laboratory parameters and outcomes in hospitalized adults with COVID-19: a scoping review. Infection. 2022;50:1–9.

    Article  CAS  Google Scholar 

  125. Bianconi V, Mannarino MR, Figorilli F, Cosentini E, Batori G, Marini E, et al. Prevalence of vitamin D deficiency and its prognostic impact on patients hospitalized with COVID-19. Nutrition. 2021;91-92:111408.

    Article  CAS  Google Scholar 

  126. Castelao J, Graziani D, Soriano JB, Izquierdo JL. Findings and prognostic value of lung ultrasound in COVID-19 pneumonia. J Ultrasound Med. 2021;40:1315–24.

    Article  Google Scholar 

  127. Korkusuz R, Karandere F, Senoglu S, Kocoglu H, Yasar KK. The prognostic role of D-dimer in hospitalized COVID-19 patients. Bratisl Lek Listy. 2021;122:811–5.

    CAS  Google Scholar 

  128. Hachim MY, Hachim IY, Naeem KB, Hannawi H, Salmi IA, Hannawi S. D-dimer, troponin, and urea level at presentation with COVID-19 can predict ICU admission: a single centered study. Front Med (Lausanne). 2020;7:585003.

    Article  Google Scholar 

  129. Stringer D, Braude P, Myint PK, Evans L, Collins JT, Verduri A, Quinn TJ, Vilches-Moraga A, Stechman MJ, Pearce L, Moug S, McCarthy K, Hewitt J, Carter B, COPE Study Collaborators. The role of C-reactive protein as a prognostic marker in COVID-19. Int J Epidemiol. 2021;50:420–9.

    Article  Google Scholar 

  130. Mannarino MR, Bianconi V, Gigante B, Strawbridge RJ, Savonen K, Kurl S, et al. IMPROVE study group. Neutrophil to lymphocyte ratio is not related to carotid atherosclerosis progression and cardiovascular events in the primary prevention of cardiovascular disease: results from the IMPROVE study. Biofactors. 2022;48:100–10.

    Article  CAS  Google Scholar 

  131. Bianconi V, Schiaroli E, Mannarino MR, Sahebkar A, Paciosi F, Benedetti S, et al. The association between neutrophil to lymphocyte ratio and endothelial dysfunction in people living with HIV on stable antiretroviral therapy. Expert Rev Anti-Infect Ther. 2022;20:113–20.

    Article  CAS  Google Scholar 

  132. Simadibrata DM, Calvin J, Wijaya AD, Ibrahim NAA. Neutrophil-to-lymphocyte ratio on admission to predict the severity and mortality of COVID-19 patients: a meta-analysis. Am J Emerg Med. 2021;42:60–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Bianconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianconi, V., Cosentini, E., Mannarino, M.R., Pirro, M. (2022). Risk Factors of Developing COVID-19 and its Severe Course. In: Banach, M. (eds) Cardiovascular Complications of COVID-19. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-15478-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15478-2_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15477-5

  • Online ISBN: 978-3-031-15478-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics