Skip to main content

Biology of SARS-CoV-2 Coronavirus; Origin, Structure, and Variants

  • Chapter
  • First Online:
Cardiovascular Complications of COVID-19

Abstract

Emerging viral infections have been known as a significant threat of recent years. Coronavirus-2 (SARS-CoV-2) was initially recognized in China and infected a large population through inhalation of droplets. Massive global deaths, multiple mutations, and the mysterious nature of the virus require serious actions. Transient mutations in this virus led to the production of different strains with various risks and severity of the disease, making the situation complex. Trigger of a cytokine storm after SARS-CoV-2 leads to the production of various inflammatory mediators including interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ),. This ultimately leads to severe lung tissue damage which is the main cause of mortality associated with this virus. Several therapeutic approaches, including pharmacological agents with anti-inflammatory and anti-viral properties, are being used to manage these patients. This chapter explains the virus, its structure, and biology. Data were collected from different clinical and animal experiments published in English (2000-April 2021), selected from Google Scholar, Scopus, PubMed, and the Cochrane library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

+ssRNA:

Positive-sense single-stranded RNA

ACE2:

Angiotensin-converting enzyme 2

ADE:

Antibody-dependent enhancement

AKT:

Protein kinase B

APC:

Antigen-presenting cells

APN:

Aminopeptidase N

ARDS:

Acute respiratory distress syndrome

CBP:

Convalescent blood products

CEACAM1:

Carcino embryonic antigen-related cell adhesion molecule 1

CFDA:

China food and drug administration

CFR:

Case fatality ratio

COVID-19:

The Coronavirus disease-2019

CRISPR:

Clustered regularly interspaced short palindromic repeats

CT:

Computerized tomography

DIC:

Disseminated intravascular coagulation

DMV:

Double-membrane vesicles

DPP4:

Dipeptidyl peptidase 4

DRF:

Damage response framework

dsRNA:

Double-stranded RNA

ERGIC:

Endoplasmic reticulum golgi intermediate compartment

FDA:

Food and drug administration

HCoV-229E:

Human coronavirus 229E

HCoV-HKU1:

Human coronavirus HKU1

HCoV-NL63:

Human coronavirus NL63

HCoV-OC43:

Human coronavirus OC43

HLA:

Human leukocyte antigen

IBV:

Infectious bronchitis virus

ICTV:

International committee on taxonomy of viruses

IFN-γ:

Interferon-gamma

IL:

Interleukin

JAK:

Janus kinase

kb:

Kilobases

mAb:

monoclonal antibodies

MERS:

Middle East respiratory syndrome

MERS-CoV:

Middle East respiratory syndrome coronavirus

MHC:

Major histocompatibility complex

MODS:

Multiple organ dysfunction syndromes

MOF:

Multiple organ failure

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear Factor κ-light-chain-enhancer of activated B cells

nsps:

Nonstructural proteins

ORF:

Open Reading Frame

PdCoV:

Porcine delta coronavirus

RAS:

Renin-angiotensin system

RBD:

Receptor-binding domain

RBM:

Receptor-binding motif

RER:

Rough endoplasmic reticulum\

RTC:

Replicase-transcriptase complex

RT-qPCR:

Real-time quantitative polymerase chain reaction

SARS:

Severe acute respiratory syndrome

SARS-CoV:

Severe acute respiratory syndrome coronavirus

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

SARSCoV-2:

Severe acute respiratory syndrome coronavirus-2

ssRNA:

Single-stranded RNA

STAT3:

Signal transducer and activator of transcription 3

TLRs:

Toll-like receptors

TMPRSS2:

Transmembrane protease serine 2

TNF-α:

Tumor Necrosis Factor-alpha

WHO:

World Health Organization

References

  1. Wang M-Y, Zhao R, Gao L-J, Gao X-F, Wang D-P, Cao J-M. SARS-CoV-2: structure, biology, and structure-based therapeutics development. Front Cell Infect Microbiol. 2020;10:587269.

    Article  CAS  Google Scholar 

  2. Li C-X, Chen J, Lv SK, Li JH, Li LL, Hu X. Whole-transcriptome RNA sequencing reveals significant differentially expressed mRNAs, miRNAs, and lncRNAs and related regulating biological pathways in the peripheral blood of COVID-19 patients. Mediat Inflamm. 2021;2021:6635925.

    Article  Google Scholar 

  3. Moradian N, Gouravani M, Salehi MA, Heidari A, Shafeghat M, Hamblin MR, Rezaei N. Cytokine release syndrome: inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur Cytokine Netw. 2020;31(3):81–93.

    Article  CAS  Google Scholar 

  4. Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol. 2020;10(9):200160.

    Article  CAS  Google Scholar 

  5. Varghese PM, Tsolaki AG, Yasmin H, Shastri A, Ferluga J, Vatish M, Madan T, Kishore U. Host-pathogen interaction in COVID-19: pathogenesis, potential therapeutics and vaccination strategies. Immunobiology. 2020;225(6):152008.

    Article  CAS  Google Scholar 

  6. Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 2020;53:66–70.

    Article  CAS  Google Scholar 

  7. Chi Z, Wu Z, Li J, Zhao H, Wang G. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020;55(5):105954.

    Article  Google Scholar 

  8. Noor H, Ikram A, Rathinavel T, Kumarasamy S, Nasir Iqbal M, Bashir Z. Immunomodulatory and anti-cytokine therapeutic potential of curcumin and its derivatives for treating COVID-19–a computational modeling. J Biomol Struct Dyn. 2021:1–16.

    Google Scholar 

  9. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. In: Maier HJ, Bickerton E, Britton P, editors. Coronaviruses: methods and protocols. New York, NY: Springer New York; 2015. p. 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1.

    Chapter  Google Scholar 

  10. Woo PCY, Huang Y, Lau SKP, Yuen K-Y. Coronavirus genomics and bioinformatics analysis. Viruses. 2010;2(8):1804–20. https://doi.org/10.3390/v2081803.

    Article  CAS  Google Scholar 

  11. Chathappady House NN, Palissery S, Sebastian H. Corona viruses: a Review on SARS, MERS and COVID-19. Microbiology Insights. 2021;14:11786361211002481. https://doi.org/10.1177/11786361211002481.

    Article  Google Scholar 

  12. Wong L-YR, Perlman S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses — are we our own worst enemy? Nat Rev Immunol. 2022;22(1):47–56. https://doi.org/10.1038/s41577-021-00656-2.

    Article  CAS  Google Scholar 

  13. Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology—Current perspectives. Pulmonology. 2021;27(5):423–37. https://doi.org/10.1016/j.pulmoe.2021.03.008.

    Article  CAS  Google Scholar 

  14. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Levantovsky R, Malle L, Moreira A, Park MD, Pia L, Risson E, Saffern M, Salomé B, Esai Selvan M, Spindler MP, Tan J, van der Heide V, Gregory JK, Alexandropoulos K, Bhardwaj N, Brown BD, Greenbaum B, Gümüş ZH, Homann D, Horowitz A, Kamphorst AO, Curotto de Lafaille MA, Mehandru S, Merad M, Samstein RM, Sinai Immunology Review P. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910–41. https://doi.org/10.1016/j.immuni.2020.05.002.

    Article  CAS  Google Scholar 

  15. Weatherhead JE, Clark E, Vogel TP, Atmar RL, Kulkarni PA. Inflammatory syndromes associated with SARS-CoV-2 infection: dysregulation of the immune response across the age spectrum. J Clin Invest. 2020;130(12):6194–7. https://doi.org/10.1172/JCI145301.

    Article  CAS  Google Scholar 

  16. Lai C, Liu X, Yan Q, Lv H, Zhou L, Hu L, Cai Y, Wang G, Chen Y, Chai R, Liu Z, Xu Y, Huang W, Xiao F, Hu L, Li Y, Huang J, Zhou Q, Li L, Peng T, Zhang H, Zhang Z, Chen L, Chen C, Ji T. Low innate immunity and lagged adaptive immune response in the re-tested viral RNA positivity of a COVID-19 patient. Front Immunol. 2021;12:664619. https://doi.org/10.3389/fimmu.2021.664619.

    Article  CAS  Google Scholar 

  17. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. China novel coronavirus I, research T (2020) a novel coronavirus from patients with pneumonia in China. N Engl J Med. 2019;382(8):727–33. https://doi.org/10.1056/NEJMoa2001017.

    Article  Google Scholar 

  18. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. https://doi.org/10.1016/s0140-6736(20)30251-8.

    Article  CAS  Google Scholar 

  19. Liu K, Pan X, Li L, Yu F, Zheng A, Du P, Han P, Meng Y, Zhang Y, Wu L, Chen Q, Song C, Jia Y, Niu S, Lu D, Qiao C, Chen Z, Ma D, Ma X, Tan S, Zhao X, Qi J, Gao GF, Wang Q. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell. 2021;184(13):3438–3451.e3410. https://doi.org/10.1016/j.cell.2021.05.031.

    Article  CAS  Google Scholar 

  20. Wrobel AG, Benton DJ, Xu P, Roustan C, Martin SR, Rosenthal PB, Skehel JJ, Gamblin SJ. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol. 2020;27(8):763–7. https://doi.org/10.1038/s41594-020-0468-7.

    Article  CAS  Google Scholar 

  21. Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54. https://doi.org/10.1038/s41579-020-00459-7.

    Article  CAS  Google Scholar 

  22. Mohammed MEA. The percentages of SARS-CoV-2 protein similarity and identity with SARS-CoV and BatCoV RaTG13 proteins can be used as indicators of virus origin. J Proteins Proteom. 2021;12(2):81–91. https://doi.org/10.1007/s42485-021-00060-3.

    Article  CAS  Google Scholar 

  23. Rastogi M, Pandey N, Shukla A, Singh SK. SARS coronavirus 2: from genome to infectome. Respir Res. 2020;21(1):318. https://doi.org/10.1186/s12931-020-01581-z.

    Article  CAS  Google Scholar 

  24. Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez P. Feigin and Cherry's textbook of pediatric infectious diseases E-book. Elsevier Health Sciences. Philadelphia: Elsevier; 2017.

    Google Scholar 

  25. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, Guan Y, Rozanov M, Spaan WJM, Gorbalenya AE. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331(5):991–1004. https://doi.org/10.1016/s0022-2836(03)00865-9.

    Article  CAS  Google Scholar 

  26. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhn P, Buchmeier MJ. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11–22. https://doi.org/10.1016/j.jsb.2010.11.021.

    Article  CAS  Google Scholar 

  27. Cruz CAK, Medina PMB. Diversity in the accessory proteins of SARS-CoV-2, SARS-CoV, and MERS-CoV Betacoronaviruses. Curr Protein Pept Sci. 2021;22(10):695–715. https://doi.org/10.2174/1389203722666210910111055.

    Article  CAS  Google Scholar 

  28. Li F, Du L. MERS-CoV. Basel: MDPI - Multidisciplinary Digital Publishing Institute; 2019.

    Google Scholar 

  29. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93–116. https://doi.org/10.1016/bs.aivir.2019.08.002.

    Article  CAS  Google Scholar 

  30. Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 2020;21(1):224. https://doi.org/10.1186/s12931-020-01479-w.

    Article  CAS  Google Scholar 

  31. Samukawa K. Use of stable isotopes in life science (III). Measurement of 15N abundance in amino acids with gas chromatography-mass spectrometry (author's transl). Radioisotopes. 1982;31(3):166–74.

    Article  CAS  Google Scholar 

  32. Dooley DC. Glycerol permeation of the human granulocyte. Exp Hematol. 1982;10(5):413–22.

    CAS  Google Scholar 

  33. Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang B, Shi Y, Yan J, Gao GF. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500(7461):227–31. https://doi.org/10.1038/nature12328.

    Article  CAS  Google Scholar 

  34. Butler D. SARS veterans tackle coronavirus. Nature. 2012;490(7418):20. https://doi.org/10.1038/490020a.

    Article  CAS  Google Scholar 

  35. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516–27.

    Article  CAS  Google Scholar 

  36. Fiorino G, Allocca M, Furfaro F, Gilardi D, Zilli A, Radice S, Spinelli A, Danese S. Inflammatory bowel disease care in the COVID-19 pandemic era: the Humanitas, Milan, experience. J Crohn's Colitis. 2020;14(9):1330–3.

    Article  Google Scholar 

  37. Bloom JD, Chan YA, Baric RS, Bjorkman PJ, Cobey S, Deverman BE, Fisman DN, Gupta R, Iwasaki A, Lipsitch M. Investigate the origins of COVID-19. Science. 2021;372(6543):694.

    Article  Google Scholar 

  38. Heiat M, Heiat F, Halaji M, Ranjbar R, Yaali-Jahromi E, Azizi M, Badri T. Phobia and fear of COVID-19: origins, complications and management, a narrative review. Ann Ig. 2021;33(4):360–70.

    CAS  Google Scholar 

  39. Otto SP, Day T, Arino J, Colijn C, Dushoff J, Li M, Mechai S, Van Domselaar G, Wu J, Earn DJ. The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Curr Biol. 2021;31(14):R918–29.

    Article  CAS  Google Scholar 

  40. Forestieri S, Pintus R, Marcialis MA, Pintus MC, Fanos V. COVID-19 and developmental origins of health and disease. Early Hum Dev. 2021;155:105322.

    Article  CAS  Google Scholar 

  41. Mallapaty S. Meet the scientists investigating the origins of the COVID pandemic. Nature. 2020;588(7837):208–9.

    Article  CAS  Google Scholar 

  42. Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, Benlekbir S, Rubinstein JL, Rini JM. The human coronavirus HCoV-229E S-protein structure and receptor binding. elife. 2019;8:e51230.

    Article  CAS  Google Scholar 

  43. Müller C, Ulyanova V, Ilinskaya O, Pleschka S, Shah Mahmud R. A novel antiviral strategy against MERS-CoV and HCoV-229E using binase to target viral genome replication. Bionanoscience. 2017;7(2):294–9.

    Article  Google Scholar 

  44. Zhang W, Zheng Q, Yan M, Chen X, Yang H, Zhou W, Rao Z. Structural characterization of the HCoV-229E fusion core. Biochem Biophys Res Commun. 2018;497(2):705–12.

    Article  CAS  Google Scholar 

  45. St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. J Virol. 2004;78(16):8824–34.

    Article  CAS  Google Scholar 

  46. Schirtzinger EE, Kim Y, Davis AS. Improving human coronavirus OC43 (HCoV-OC43) research comparability in studies using HCoV-OC43 as a surrogate for SARS-CoV-2. J Virol Methods. 2022;299:114317.

    Article  CAS  Google Scholar 

  47. Ludwig S, Zarbock A. Coronaviruses and SARS-CoV-2: a brief overview. Anesth Analg. 2020;131(1):93–6.

    Article  CAS  Google Scholar 

  48. Arden KE, Nissen MD, Sloots TP, Mackay IM. New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia. J Med Virol. 2005;75(3):455–62.

    Article  CAS  Google Scholar 

  49. Aldridge RW, Lewer D, Beale S, Johnson AM, Zambon M, Hayward AC, Fragaszy EB, Group FW. Seasonality and immunity to laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-OC43, and HCoV-229E): results from the flu watch cohort study. Wellcome Open Res. 2020;5:52.

    Article  Google Scholar 

  50. Zhao Q, Li S, Xue F, Zou Y, Chen C, Bartlam M, Rao Z. Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. J Virol. 2008;82(17):8647–55.

    Article  CAS  Google Scholar 

  51. Liu DX, Liang JQ, Fung TS. Human coronavirus-229e,-oc43,-nl63, and-hku1 (coronaviridae). Encyclopedia Virol. 2021;2021:428.

    Article  Google Scholar 

  52. Du L, Yang Y, Zhou Y, Lu L, Li F, Jiang S. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets. 2017;21(2):131–43.

    Article  CAS  Google Scholar 

  53. Chafekar A, Fielding BC. MERS-CoV: understanding the latest human coronavirus threat. Viruses. 2018;10(2):93.

    Article  Google Scholar 

  54. Hasöksüz M, Kiliç S, Saraç F. Coronaviruses and sars-cov-2. Turk J Med Sci. 2020;50(SI-1):549–56.

    Article  Google Scholar 

  55. Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol. 2020;41(12):1100–15.

    Article  CAS  Google Scholar 

  56. Sender R, Bar-On YM, Gleizer S, Bernshtein B, Flamholz A, Phillips R, Milo R. The total number and mass of SARS-CoV-2 virions. Proc Natl Acad Sci U S A. 2021;118(25):e2024815118. https://doi.org/10.1073/pnas.2024815118.

    Article  CAS  Google Scholar 

  57. Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, Rota PA, Bankamp B, Bellini WJ, Zaki SR. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis. 2004;10(2):320–6. https://doi.org/10.3201/eid1002.030913.

    Article  Google Scholar 

  58. Kumar S, Nyodu R, Maurya VK, Saxena SK. Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19). 2020;2020:23–31. https://doi.org/10.1007/978-981-15-4814-7_3.

    Article  Google Scholar 

  59. Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, Lu JM, Peukes J, Xiong X, Kräusslich H-G, Scheres SHW, Bartenschlager R, Briggs JAG. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588(7838):498–502. https://doi.org/10.1038/s41586-020-2665-2.

    Article  CAS  Google Scholar 

  60. Hurdiss DL, Drulyte I, Lang Y, Shamorkina TM, Pronker MF, van Kuppeveld FJM, Snijder J, de Groot RJ. Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nat Commun. 2020;11(1):4646. https://doi.org/10.1038/s41467-020-18440-6.

    Article  CAS  Google Scholar 

  61. Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol. 2020;27(12):1202–8. https://doi.org/10.1038/s41594-020-00536-8.

    Article  CAS  Google Scholar 

  62. Hu Y, Wen J, Tang L, Zhang H, Zhang X, Li Y, Wang J, Han Y, Li G, Shi J, Tian X, Jiang F, Zhao X, Wang J, Liu S, Zeng C, Wang J, Yang H. The M protein of SARS-CoV: basic structural and immunological properties. Genomics Proteomics Bioinformatics. 2003;1(2):118–30. https://doi.org/10.1016/s1672-0229(03)01016-7.

    Article  CAS  Google Scholar 

  63. Lissenberg A, Vrolijk MM, van Vliet AL, Langereis MA, de Groot-Mijnes JD, Rottier PJ, de Groot RJ. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J Virol. 2005;79(24):15054–63. https://doi.org/10.1128/jvi.79.24.15054-15063.2005.

    Article  CAS  Google Scholar 

  64. Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. 2021;39(9):3409–18. https://doi.org/10.1080/07391102.2020.1758788.

    Article  CAS  Google Scholar 

  65. de Haan CAM, Volders H, Koetzner CA, Masters PS, Rottier PJM. Coronaviruses maintain viability despite dramatic rearrangements of the strictly conserved genome organization. J Virol. 2002;76(24):12491–502. https://doi.org/10.1128/jvi.76.24.12491-12502.2002.

    Article  Google Scholar 

  66. Kandeel M, Ibrahim A, Fayez M, Al-Nazawi M. From SARS and MERS CoVs to SARS-CoV-2: moving toward more biased codon usage in viral structural and nonstructural genes. J Med Virol. 2020;92(6):660–6. https://doi.org/10.1002/jmv.25754.

    Article  CAS  Google Scholar 

  67. Gorkhali R, Koirala P, Rijal S, Mainali A, Baral A, Bhattarai HK. Structure and function of major SARS-CoV-2 and SARS-CoV proteins. Bioinform Biol Insights. 2021;15:11779322211025876. https://doi.org/10.1177/11779322211025876.

    Article  Google Scholar 

  68. Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells. 2020;9(5):1267. https://doi.org/10.3390/cells9051267.

    Article  CAS  Google Scholar 

  69. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci. 2020;117(21):11727. https://doi.org/10.1073/pnas.2003138117.

    Article  CAS  Google Scholar 

  70. van Hemert MJ, van den Worm SH, Knoops K, Mommaas AM, Gorbalenya AE, Snijder EJ. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog. 2008;4(5):e1000054. https://doi.org/10.1371/journal.ppat.1000054.

    Article  CAS  Google Scholar 

  71. Fan Y, Zhao K, Shi Z-L, Zhou P. Bat Coronaviruses in China. Viruses. 2019;11(3):210. https://doi.org/10.3390/v11030210.

    Article  CAS  Google Scholar 

  72. Payne S. Chapter 17 - family Coronaviridae. In: Payne S, editor. Viruses. Cambridge: Academic Press; 2017. p. 149–58. https://doi.org/10.1016/B978-0-12-803109-4.00017-9.

    Chapter  Google Scholar 

  73. "International Committee on Taxonomy of Viruses (ICTV)" (Retrieved 2020-09-14). talk.ictvonline.org.

  74. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res. 2018;100:163–88. https://doi.org/10.1016/bs.aivir.2018.01.001.

    Article  CAS  Google Scholar 

  75. Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2): an update. Cureus. 2020;12(3):e7423. https://doi.org/10.7759/cureus.7423.

    Article  Google Scholar 

  76. World Health Organization ((27 November 2021)) "Tracking SARS-CoV-2 variants". World Health Organization. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants.

  77. Konings F, Perkins MD, Kuhn JH, Pallen MJ, Alm EJ, Archer BN, Barakat A, Bedford T, Bhiman JN, Caly L, Carter LL, Cullinane A, de Oliveira T, Druce J, El Masry I, Evans R, Gao GF, Gorbalenya AE, Hamblion E, Herring BL, Hodcroft E, Holmes EC, Kakkar M, Khare S, Koopmans MPG, Korber B, Leite J, MacCannell D, Marklewitz M, Maurer-Stroh S, Rico JAM, Munster VJ, Neher R, Munnink BO, Pavlin BI, Peiris M, Poon L, Pybus O, Rambaut A, Resende P, Subissi L, Thiel V, Tong S, van der Werf S, von Gottberg A, Ziebuhr J, Van Kerkhove MD. SARS-CoV-2 variants of interest and concern naming scheme conducive for global discourse. Nat Microbiol. 2021;6(7):821–3. https://doi.org/10.1038/s41564-021-00932-w.

    Article  CAS  Google Scholar 

  78. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–70.

    Article  Google Scholar 

  79. Dong N, Yang X, Ye L, Chen K, Chan EW-C, Yang M, Chen S (2020) Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China. BioRxiv.

    Google Scholar 

  80. Haas P, Muralidharan M, Krogan NJ, Kaake RM, Hüttenhain R. Proteomic approaches to study SARS-CoV-2 biology and COVID-19 pathology. J Proteome Res. 2021;20(2):1133–52.

    Article  CAS  Google Scholar 

  81. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215–20.

    Article  CAS  Google Scholar 

  82. Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q, Bashir N, Xue M. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options. J Clin Microbiol. 2020;58(5):e00187–20.

    Article  CAS  Google Scholar 

  83. Tomohiro S, Takaaki A. What triggers inflammation in COVID-19? Elife. 2022;11:e76231.

    Article  Google Scholar 

  84. Joob B, Wiwanitkit V. New COVID-19 variant, VUI-202012/01: molecular change, epitope alteration, and implication for vaccine efficacy. Int J Prev Med. 2022;12(12):12–172. https://doi.org/10.4103/IJPVM.IJPVM_2708_2020.

    Article  Google Scholar 

  85. Vasireddy D, Vanaparthy R, Mohan G, Malayala SV, Atluri P. Review of COVID-19 variants and COVID-19 vaccine efficacy: what the clinician should know? J Clin Med Res. 2021;13(6):317–25.

    Article  CAS  Google Scholar 

  86. Wu CR, Yin WC, Jiang Y, Xu HE. Structure genomics of SARS-CoV-2 and its omicron variant: drug design templates for COVID-19. Acta Pharmacol Sin. 2022:1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeideh Momtaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lashgari, NA. et al. (2022). Biology of SARS-CoV-2 Coronavirus; Origin, Structure, and Variants. In: Banach, M. (eds) Cardiovascular Complications of COVID-19. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-15478-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15478-2_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-15477-5

  • Online ISBN: 978-3-031-15478-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics