Abstract
A new methodology has been applied to improve the prediction accuracy on the olive phenology forecasting problem, applying deep learning with hyperparameter optimization to handle with imbalanced data. The application of hyperparameter optimization to optimize the architecture of the deep neural network along with both class balancing preprocessing and the introduction of new variables allowed to improve the phenological forecast classification problem in 16 different plots from 4 different areas in Spain is introduced in this work. The results obtained have been shown to be promising and encourage further research in this field, where the potential for improvement is very high. The improvements, in terms of prediction accuracy, achieved are around 4% on average and, in some cases, exceeding 20%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 100379 (2021)
Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D.: Machine learning in agriculture: a review. Sensors 18(8), 2674 (2018)
Molina, M.Á., Jiménez-Navarro, M.J., Martínez-Álvarez, F., Asencio-Cortés, G.: A model-based deep transfer learning algorithm for phenology forecasting using satellite imagery. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) HAIS 2021. LNCS (LNAI), vol. 12886, pp. 511–523. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86271-8_43
Yang, Q., Shi, L., Han, J., Yu, J., Huang, K.: A near real-time deep learning approach for detecting rice phenology based on UAV images. Agric. For. Meteorol. 287, 107938 (2020)
Yalcin, H.: Phenology recognition using deep learning. In: Proceedings of the Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting, pp. 1–5 (2018)
Grünig, M., Razavi, E., Calanca, P., Mazzi, D., Wegner, J.D., Pellissier, L.: Applying deep neural networks to predict incidence and phenology of plant pests and diseases. Emerg. Technol. 12, e03791 (2021)
Skakun, S., et al.: Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ. 195, 244–258 (2017)
Hao, P., Zhan, Y., Wang, L., Niu, Z., Shakir, M.: Feature selection of time series MODIS data for early crop classification using random forest: a case study in Kansas, USA. Remote Sens. 7(5), 5347–5369 (2015)
Wang, Y., Xue, Z., Chen, J., Chen, G.: Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015. Front. Earth Sci. 13(1), 92–110 (2019). https://doi.org/10.1007/s11707-018-0713-0
Xue, Z., Du, P., Feng, L.: Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 7(4), 1142–1156 (2014)
Melgar, L., Gutiérrez-Avilés, D., Godinho, M.T., et al.: A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture. Neurocomputing 500, 268–278 (2022)
Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person re-identification: a survey and outlook. CoRR, abs/2001.04193 (2020)
Feng, S., Zhou, H., Dong, H.: Using deep neural network with small dataset to predict material defects. Mater. Des. 162, 300–310 (2019)
Torres, J.F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., Troncoso, A.: Deep learning for time series forecasting: a survey. Big Data 9, 3–21 (2021)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Branco, P., Torgo, L., Ribeiro, R.: A survey of predictive modelling under imbalanced domains. ACM Comput. Surv. 49(a30), 1–50 (2017)
He, H., Bai, Y., Garcia, E. A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1322–1328 (2008)
Nguyen, H.M., Cooper, E.W., Kamei, K.: Borderline over-sampling for imbalanced data classification. Int. J. Knowl. Eng. Soft Data Paradig. 3(1), 4–21 (2011)
de Andalucia, J.: RAIF website of the Consejeria de Agricultura, pesca y desarrollo rural (2020). https://www.juntadeandalucia.es/agriculturapescaydesarrollorural/raif. Accessed 26 Mar 2020
Acknowledgements
The authors would like to thank the Spanish Ministry of Science and Innovation for the support under the project PID2020-117954RB, the European Regional Development Fund and Junta de Andalucía for projects PY20-00870 and UPO-138516.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Chacón-Maldonado, A.M., Molina-Cabanillas, M.A., Troncoso, A., Martínez-Álvarez, F., Asencio-Cortés, G. (2022). Olive Phenology Forecasting Using Information Fusion-Based Imbalanced Preprocessing and Automated Deep Learning. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer Science(), vol 13469. Springer, Cham. https://doi.org/10.1007/978-3-031-15471-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-15471-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15470-6
Online ISBN: 978-3-031-15471-3
eBook Packages: Computer ScienceComputer Science (R0)