Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 151))

  • 225 Accesses

Abstract

This chapter presents applications of the collision detection schemes from Chap. 5, and a high level research outlook for the methods developed in this theseis. Collision detection applications are presented in Sect. 6.1, namely collision reflexes and collision location determination in Sect. 6.1.1, and tactile mapping as part of an autonomy stack of a flying robot in Sect. 6.1.3. In Sect. 6.2, the goals and research question posed in this book are extrapolated towards the goal of interaction, disturbance and fault-aware flying robot swarms. It is argued that robust operation of interacting flying robots requires systematic handling of interactions and external inputs from individual robot to swarm level. For this, a scalable methodology for interaction, disturbance and fault handling is introduced, resulting in an awareness pipeline scheme that can be applied to robot swarms. Another algorithmic key element for unification is the extension of well established methods from operational space and multipriority robot control to this system class, potentially leading to novel controls and skills of flying robot swarms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.A. Acosta, C.R. de Cos, A. Ollero, A robust decentralised strategy for multi-task control of unmanned aerial systems. application on underactuated aerial manipulator, in 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (2016), pp. 1075–1084

    Google Scholar 

  2. K. Alexis, G. Darivianakis, M. Burri, R. Siegwart, Aerial robotic contact-based inspection: planning and control. Autonom. Robots 40(4), 631–655 (2016). ISSN: 1573-7527

    Google Scholar 

  3. G. Antonelli, F. Arrichiello, S. Chiaverini, The null-space-based behavioural control for autonomous robotic systems. Intell. Ser. Robot. 1(1), 27–39 (2008). ISSN: 1861-2784

    Google Scholar 

  4. F. Augugliaro, R. D’Andrea, Admittance control for physical human- quadrocopter interaction, in 2013 European Control Conference (ECC) (Zürich, Switzerland, 2013), pp. 1805–1810

    Google Scholar 

  5. K. Baizid, G. Giglio, F. Pierri, M.A. Trujillo, G. Antonelli, F. Caccavale, A. Viguria, S. Chiaverini, A. Ollero, Behavioral control of unmanned aerial vehicle manipulator systems. Auton. Robots 41(5), 1203–1220 (2017). ISSN: 1573-7527

    Google Scholar 

  6. S. Bellens, J. De Schutter, H. Bruyninckx, A hybrid pose/wrench control framework for quadrotor helicopters. ICRA 2012, 2269–2274 (2012). https://doi.org/10.1109/ICRA.2012.6224682

    Article  Google Scholar 

  7. M. Bernard, K. Kondak, Generic slung load transportation system using small size helicopters, in ICRA’09. IEEE International Conference on Robotics and Automation (IEEE, 2009), pp. 3258–3264

    Google Scholar 

  8. A. De Luca, A. Albu-Schäffer, S. Haddadin, G. Hirzinger, Collision detection and safe reaction with the dlr-iii lightweight manipulator arm. IROS 2006, 1623–1630 (2006). https://doi.org/10.1109/IROS.2006.282053

    Article  Google Scholar 

  9. S. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools (Springer Science & Business Media, 2008)

    Google Scholar 

  10. N. Diolaiti, C. Melchiorri, S. Stramigioli, Contact impedance estimation for robotic systems. IEEE Trans. Robot. 21(5), 925–935 (2005). ISSN: 1552-3098. https://doi.org/10.1109/TRO.2005.852261

  11. A. Franchi, C. Secchi, M. Ryll, H. Blthoff, P.R. Giordano, Shared control: balancing autonomy and human assistance with a group of quadrotor UAVs. IEEE Robot. Autom. Mag. 19(3) (2012)

    Google Scholar 

  12. M. Freeman, Drone that is IMPOSSIBLE TO CRASH!!! (2019). https://www.youtube.com/watch?v=GHZmXI4Htks

  13. G. Gioioso, A. Franchi, G. Salvietti, S. Scheggi, D. Prattichizzo, The flying hand: a formation of uavs for cooperative aerial tele-manipulation, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014), pp. 4335–4341

    Google Scholar 

  14. F. Gustafsson, F. Gustafsson, Adaptive Filtering and Change Detection, vol. 1 (Wiley New York, 2000)

    Google Scholar 

  15. S. Haddadin, A.D. Luca, A. Albu-Schäffer, Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. PP(99), 1–21 (2017). ISSN: 1552-3098, https://doi.org/10.1109/TRO.2017.2723903

  16. O. Khatib, A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987). ISSN: 0882-4967

    Google Scholar 

  17. S. Li, J. Yang, W.-H. Chen, X. Chen, Disturbance Observer-Based Control: Methods and Applications, 1st edn. (CRC Press, Inc., Boca Raton, FL, USA, 2014), ISBN: 1466515791, 9781466515796

    Google Scholar 

  18. D. Mellinger, M. Shomin, N. Michael, V. Kumar, Cooperative grasping and transport using multiple quadrotors, in Distributed Autonomous Robotic Systems (Springer, 2013), pp. 545–558

    Google Scholar 

  19. A.Y. Mersha, S. Stramigioli, R. Carloni, Variable impedance control for aerial interaction, in IROS2014 (IEEE, 2014), pp. 3435–3440

    Google Scholar 

  20. M.W. Mueller, R. D’Andrea, Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2014), pp. 45–52

    Google Scholar 

  21. R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006). ISSN: 0018-9286

    Google Scholar 

  22. R. Olfati-Saber, J.A. Fax, R.M. Murray, Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007). ISSN: 0018-9219. https://doi.org/10.1109/JPROC.2006.887293

  23. C. Papachristos, K. Alexis, A. Tzes, Efficient force exertion for aerial robotic manipulation: Exploiting the thrust-vectoring authority of a tritiltrotor UAV, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (2014), pp. 4500–4505

    Google Scholar 

  24. S. Rajappa, H. Blthoff, P. Stegagno, Design and implementation of a novel architecture for physical human-UAV interaction. Int. J. Robot. Res. 0 278 364 917 708 038 (2017)

    Google Scholar 

  25. S. Rajappa, M. Ryll, H.H. Blthoff, A. Franchi, Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers, in 2015 IEEE International Conference on Robotics and Automation (ICRA) (2015), pp. 4006–4013

    Google Scholar 

  26. F. Ruggiero, J. Cacace, H. Sadeghian, V. Lippiello, Impedance control of VToL UAVs with a momentum-based external generalized forces estimator, in ICRA 2014 (Hong Kong, China, 2014), pp. 2093–2099

    Google Scholar 

  27. M. Ryll, D. Bicego, A. Franchi, modeling and control of FAST-hex: a fully-actuated by synchronized-tilting hexarotor, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016 (Daejeon, South Korea, 2016)

    Google Scholar 

  28. M. Ryll, G. Muscio, F. Pierri, E. Cataldi, C.G. Antonelli, A.F. Franchi, 6d physical interaction with a fully actuated aerial robot, in 2017 IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  29. K. Schmid, P. Lutz, T. Tomić, E. Mair, H. Hirschmller, Autonomous vision-based micro air vehicle for indoor and outdoor navigation. J. Field Robot. 31(4), 537–570 (2014). ISSN: 1556-4967, https://doi.org/10.1002/rob.21506

  30. B. Siciliano, O. Khatib, Springer Handbook of Robotics (Springer, 2016)

    Google Scholar 

  31. S. Simani, C. Fantuzzi, R.J. Patton, Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques (Springer Science & Business Media, 2013)

    Google Scholar 

  32. T. Tomc, Simultaneous estimation of aerodynamic and contact forces in flying robots: Applications to metric wind estimation and collision detection, in ICRA 2015 (Seattle, WA, USA, 2015), pp. 5290–5296. https://doi.org/10.1109/ICRA.2015.7139937

  33. T. Tomić, Evaluation of acceleration-based disturbance observation for multicopter control, in 2014 European Control Conference (ECC) (2014), pp. 2937–2944. https://doi.org/10.1109/ECC.2014.6862237

  34. T. Tomić, S. Haddadin, A unified framework for external wrench estimation, interaction control and collision reflexes for flying robots, in IROS 2014 (IL, USA, Chicago, 2014)

    Google Scholar 

  35. T. Tomić, C. Ott, S. Haddadin, External wrench estimation, collision detection, and reflex reaction for flying robots. IEEE Trans. Robot. 33(6), 1467–1482 (2017). ISSN: 1552-3098, https://doi.org/10.1109/TRO.2017.2750703

  36. T. Tomić, K. Schmid, P. Lutz, A. Mathers, S. Haddadin, The flying anemometer: unified estimation of wind velocity from aerodynamic power and wrenches, in IROS 2016, IEEE, Daejeon, Korea (2016), pp. 1637–1644

    Google Scholar 

  37. T. Tomić, K. Schmid, P. Lutz, A. Mathers, S. Haddadin, Simultaneous contact and aerodynamic force estimation (s-CAFE) for aerial robots. Int. J. Robot. Res. (IJRR) 39(6), 688–728 (2020). https://doi.org/10.1177/0278364920904788

  38. J. Ware, N. Roy, An analysis of wind field estimation and exploitation for quadrotor flight in the urban canopy layer, in ICRA (IEEE, 2016), pp. 1507–1514

    Google Scholar 

  39. S.L. Waslander, C. Wang, Wind disturbance estimation and rejection for quadrotor position control, in AIAA Infotech@Aerospace Conference (Seattle, WA, USA, 2009)

    Google Scholar 

  40. J.W. Yao, V.R. Desaraju, N. Michael, Experience-based models of surface proximal aerial robot flight performance in wind, in International Symposium on Experimental Robotics (Springer, 2016), pp. 563–573

    Google Scholar 

  41. M. Zhao, K. Kawasaki, X. Chen, Y. Kakiuchi, K. Okada, M. Inaba, Transformable multirotor with two-dimensional multilinks: modeling, control, and whole-body aerial manipulation, in 2016 International Symposium on Experimental Robotics (Springer International Publishing, Cham, 2017), pp. 515–524. ISBN: 978-3-319-50115-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Tomić .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomić, T. (2023). Applications and Outlook. In: Model-Based Control of Flying Robots for Robust Interaction Under Wind Influence. Springer Tracts in Advanced Robotics, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-031-15393-8_6

Download citation

Publish with us

Policies and ethics