Skip to main content

Abstract Cyclic Proofs

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13468))

Abstract

Cyclic proof systems permit derivations that are finite graphs in contrast to conventional derivation trees. The soundness of such proofs is ensured by a condition on the paths through the derivation graph, known as the global trace condition. To give a uniform treatment of such cyclic proof systems, Brotherston proposed an abstract notion of trace. We extend Brotherston’s approach into a category theoretical rendition of cyclic derivations, advancing the framework in two ways: First, we introduce activation algebras which allow for a more natural formalisation of trace conditions in extant cyclic proof systems. Second, accounting for the composition of trace information allows us to derive novel results about cyclic proofs, such as introducing the Ramsey trace condition.

This work was supported by the Knut and Alice Wallenberg Foundation [2020.0199, 2015.0179]; and the Swedish Research Council [2017-05111, 2016-03502].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afshari, B., Leigh, G.E.: Cut-free completeness for modal mu-calculus. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12, June 2017. https://doi.org/10.1109/LICS.2017.8005088

  2. Afshari, B., Leigh, G.E., Menéndez Turata, G.: Uniform interpolation from cyclic proofs: the case of modal mu-calculus. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 335–353. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_20

    Chapter  Google Scholar 

  3. Baelde, D., Doumane, A., Kuperberg, D., Saurin, A.: Bouncing threads for infinitary and circular proofs. arXiv:2005.08257 [cs], May 2020

  4. Berardi, S., Tatsuta, M.: Equivalence of inductive definitions and cyclic proofs under arithmetic. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12 (2017). https://doi.org/10.1109/LICS.2017.8005114

  5. Brotherston, J.: Sequent calculus proof systems for inductive definitions. Ph.D. thesis, University of Edinburgh, November 2006

    Google Scholar 

  6. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_12

    Chapter  Google Scholar 

  7. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2_25

    Chapter  Google Scholar 

  8. Das, A.: On the logical complexity of cyclic arithmetic. Log. Methods Comput. Sci. 16(1) (2020). https://doi.org/10.23638/LMCS-16(1:1)2020

  9. Das, A.: A circular version of Gödel’s T and its abstraction complexity. arXiv:2012.14421 [cs, math], January 2021

  10. Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-elimination. In: Rocca, S.R.D. (ed.) Computer Science Logic 2013 (CSL 2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 23, pp. 248–262. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.248

  11. Jungteerapanich, N.: A tableau system for the modal \(\mu \)-calculus. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 220–234. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-1_17

    Chapter  Google Scholar 

  12. Kori, M., Tsukada, T., Kobayashi, N.: A cyclic proof system for HFLN. In: Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 183, pp. 29:1–29:22. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.29

  13. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2001, pp. 81–92. Association for Computing Machinery, New York, January 2001. https://doi.org/10.1145/360204.360210

  14. Marti, J., Venema, Y.: Focus-style proof systems and interpolation for the alternation-free \(\mu \)-calculus. arXiv:2103.01671 [cs], April 2021

  15. Niwiński, D., Walukiewicz, I.: Games for the \(\mu \)-calculus. Theor. Comput. Sci. 163(1–2), 99–116 (1996). https://doi.org/10.1016/0304-3975(95)00136-0

    Article  Google Scholar 

  16. Nollet, R., Saurin, A., Tasson, C.: PSPACE-completeness of a thread criterion for circular proofs in linear logic with least and greatest fixed points. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 317–334. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29026-9_18

    Chapter  Google Scholar 

  17. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. s2-30(1), 264–286 (1930). https://doi.org/10.1112/plms/s2-30.1.264

  18. Savateev, Y., Shamkanov, D.: Non-well-founded proofs for the Grzegorczyk modal logic. Rev. Symb. Logic 14(1), 22–50 (2021). https://doi.org/10.1017/S1755020319000510

    Article  Google Scholar 

  19. Simpson, A.: Cyclic arithmetic is equivalent to Peano arithmetic. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 283–300. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_17

    Chapter  Google Scholar 

  20. Stirling, C.: A proof system with names for modal mu-calculus. Electron. Proc. Theor. Comput. Sci. 129, 18–29 (2013). https://doi.org/10.4204/EPTCS.129.2

    Article  Google Scholar 

  21. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer programs with cyclic proof. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 491–508. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_30

    Chapter  Google Scholar 

  22. Wehr, D.: An abstract framework for the analysis of cyclic derivations. M.Sc. thesis, University of Amsterdam, August 2021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Wehr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Afshari, B., Wehr, D. (2022). Abstract Cyclic Proofs. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds) Logic, Language, Information, and Computation. WoLLIC 2022. Lecture Notes in Computer Science, vol 13468. Springer, Cham. https://doi.org/10.1007/978-3-031-15298-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15298-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15297-9

  • Online ISBN: 978-3-031-15298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics