Skip to main content

Development and Adoption of Model-Based Practices in Precision Agriculture

  • Chapter
  • First Online:
Precision Agriculture: Modelling

Abstract

Decision-making in agriculture becomes increasingly challenging as farmers seek to meet agronomic, environmental and compliance goals. There is an increasing amount of data available to help reach these goals, and decision-making can be supported by computer-based DSSs. Unfortunately, not all DSS are adopted or contribute to efficient farming. The reasons for non-adoption are not easy to find, as such failures are often not reported in the literature, hindering the process of learning from our mistakes. In this chapter we attempt to identify some of the causes of failure and propose strategies to overcome them. This involves a mix of many years of experience in model development, improving fertilizer use and more recent studies from social sciences on adoption. It is challenging for natural and social scientists to work together towards understanding the processes in creating model-based solutions in precision farming. In the past, social scientists have concentrated on the behavioural reasons for (non)adoption of model-based practices (MBPs), but it is impossible to improve the usability of even the best scientific model as it is too late after it has been developed. Natural scientists have also developed excellent research models of no use to practitioners. To avoid such mismatches, all stakeholders, particularly potential users, must be involved from the beginning and at all stages in the process. Simultaneously, natural and social scientists must work together to create models suitable for the farmer. In conclusion, co-creation is important and users need to be involved from the start. A model must be designed to take account of stakeholder needs, address relevant questions and provide appropriate answers with minimal data requirements in a user-friendly way. Models must identify and respond to the social and individual-level phenomena which lead to a number of well-documented biases that influence behaviour and attitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedullah, S. K., & Qaim, M. (2015). Bt cotton, pesticide use and environmental efficiency in Pakistan. Journal of Agricultural Economics, 66, 66–86.

    Article  Google Scholar 

  • Adebiyi, S., & Okunlola, J. O. (2013). Factors affecting adoption of cocoa farm rehabilitation techniques in Oyo state of Nigeria. World Journal of Agricultural Sciences, 9(3), 258–265.

    Google Scholar 

  • Adesina, A., & Zinnah, M. (1993). Technology characteristics, farmers’ perceptions and adoption decisions: A Tobit model application in sierra Leona. Agricultural Economics, 9(4), 297–311.

    Article  Google Scholar 

  • Akaka, J., Tisserand, J-C., García-Gallego, A. & Georgantzis, N. (2021). Decision support systems adoption in pesticide management (Working Paper 2021/8). Economics Department, Universitat Jaume I, Castellón.

    Google Scholar 

  • Alajoutsijärvi, K., & Tikkanen, H. (2000). Customer relationships and the small software firm: A framework for understanding challenges faced in marketing. Information & Management, 37(3), 153–159.

    Article  Google Scholar 

  • Alexander, C., & Van Mellor, T. (2005). Determinants of corn rootworm resistant corn adoption in Indiana. AgBioforum, 8(4), 197–204.

    Google Scholar 

  • Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école Américaine. Econometrica, 21, 503–546.

    Article  Google Scholar 

  • Ambali, O.I., Areal, F. J. & Georgantzis, N. (2019). The role of spatial dependence in risk preference: Evidence from Nigeria. Sixth International Conference of the African Association of Agricultural Economists (AAAE), September 23–26, 2019, Abuja, Nigeria 295871.

    Google Scholar 

  • Ambali, O. I., Areal, F. J., & Georgantzis, N. (2021). Roles of risk preferences and spatial dependence in decisions to adopt improved rice technology. Sustainability, 13, 5943.

    Article  Google Scholar 

  • Apergis, N., Christou, C., Hayat, T., & Saeed, T. (2020). U.S. Monetary policy and herding: Evidence from commodity markets. Atlantic Economic Journal, 48(3), 355–374.

    Article  Google Scholar 

  • Areal, F. J., Balcombe, K., & Tiffin, R. (2012). Integrating spatial dependence into stochastic frontier analysis. Australian Journal of Agricultural and Resource Economics, 56, 521–541.

    Article  Google Scholar 

  • Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as an enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54, 510–520.

    Article  Google Scholar 

  • Bandiera, O., & Rasul, I. (2006). Social networks and technology adoption in Northern Mozambique. The Economic Journal, 16(514), 869–902.

    Article  Google Scholar 

  • Barham, B. L., Chavas, J. P., Fitz, D., Ríos-Salas, V., & Schechter, L. (2014). The roles of risk and ambiguity in technology adoption. Journal of Economic Behaviour and Organization, 97, 204–218.

    Article  Google Scholar 

  • Barham, B. L., Chavas, J. P., Fitz, D., Ríos-Salas, V., & Schechter, L. (2015). Risk, learning, and technology adoption. Agricultural Economics, 46, 11–24.

    Article  Google Scholar 

  • Bellarby, J., Siciliano, G., Smith, L. E. D., Xin, L., Zhou, J., Liu, K., Jie, L., Meng, F., Inman, A., Rahn, C., Surridge, B., & Haygarth, P. M. (2017). Strategies for sustainable nutrient management: Insights from a mixed natural and social science analysis of Chinese crop production systems. Environmental Development, 21, 52–65.

    Article  Google Scholar 

  • Bonabana-Wabbi, J., Taylor, D. B., Bertelsen, M., & Mcguirk, A. (2002). Assessing factors affecting adoption of agricultural technologies: The case of Integrated pest Management (IPM) in Kumi District. Virginia Tech.

    Google Scholar 

  • Bontemps, C., Bougherara, D., & Nauges, C. (2021). Do risk preferences really matter? The case of pesticide use in agriculture. Environmental Modeling and Assessment, Forthcoming, 26(4), 609–630.

    Article  Google Scholar 

  • Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In R. L. Launer & G. N. Wilkinson (Eds.), Robustness in statistics (pp. 201–236). Academic.

    Chapter  Google Scholar 

  • Caswell, M., K. Fuglie, Ingram, C., Jans, S., & Kascak, C. (2001). Adoption of agricultural production practices: lessons learned from the U.S. department of agriculture area studies project. (Resource Economics Division, Economic Research Service, Agriculture Economic Report No.792). U.S. Department of Agriculture, Washington, DC.

    Google Scholar 

  • Columbus L. (2021). 10 ways AI has the potential to improve agriculture. In: 2021 https://www.forbes.com/sites/louiscolumbus/2021/02/17/10-ways-ai-has-the-potential-to-improve-agriculture-in-2021/

  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339.

    Article  Google Scholar 

  • de Wit, C. T. (1982). Simulation of living systems. In F. W. T. Penning de Vries & H. H. van Laar (Eds.), Simulation of plant growth and crop production (Vol. 86, pp. 3–8).

    Google Scholar 

  • Doll, J., & Ajzen, I. (1992). Accessibility and stability of predictors in the theory of planned behavior. Journal of Personality and Social Psychology, 63(5), 754–765.

    Article  Google Scholar 

  • Doss, C. R. (2003). Understanding farm-level technology adoption: Lessons learned from CIMMYT micro surveys in Eastern Africa. CIMMYT.

    Google Scholar 

  • Doss, C. R., & Morris, M. L. (2000). How does gender affect the adoption of agricultural innovations? Agricultural Economics, 25(1), 27–39.

    Article  Google Scholar 

  • EU. (1991). Directive concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). The Council of The European Communities Brussels.

    Google Scholar 

  • Feder, G. (1979). Pesticides, information, and pest management under uncertainty. American Journal of Agricultural Economics, 61(1), 97–103.

    Article  Google Scholar 

  • Feder, G., & Umali, D. L. (1993). The adoption of agricultural innovations. A review. Technological Forecasting and Social Change, 43(3–4), 215–239.

    Article  Google Scholar 

  • Feder, G., Just, R. E., & Zilberman, D. (1995). Adoption of agricultural innovations in developing countries: A survey. Economic Development and Cultural Change, 33(2), 255–298.

    Article  Google Scholar 

  • Foster, A. D., & Rosenzweig, M. R. (1995). Learning by doing and learning from others: Human capital and technical change in agriculture. Journal of Political Economy, 103(6), 1176–1209.

    Article  Google Scholar 

  • Fountas, S., Blackmore, S., Ess, D., Hawkins, S., Blumhoff, G., Lowenberg-Deboer, J., & Sorensen, C. G. (2005). Farmer experience with precision agriculture in Denmark and the US Eastern Corn Belt. Precision Agriculture, 6, 121–141.

    Article  Google Scholar 

  • Gray, D. I., Parker, W. J., & Kemp, E. (2009). Farm management research: A discussion of some of the important issues. Journal of International Farm Management, 5(1), 1–24.

    Google Scholar 

  • Grieshop, J. I., Zalom, F. G., & Miyao, G. (1988). Adoption and diffusion of integrated pest management innovations in agriculture. Bulletin of the Entomological Society of America, 34(2), 72–79.

    Article  Google Scholar 

  • Harper, J. K., Rister, M. E., Mjelde, J. W., Drees, B. M., & Way, M. O. (1990). Factors influencing the adoption of insect management technology. American Journal of Agricultural Economics, 72(4), 997–1005.

    Article  Google Scholar 

  • Hillenbrand, E. & Miruka, M. (2019). Gender and social norms in agriculture: A review. In A. R. Quisumbing, R. S. Meinzen-Dick, & J. Njuki (Eds.), 2019 Annual trends and outlook report: Gender equality in rural Africa: From commitments to outcomes (Chapter 2, pp. 11–31).

    Google Scholar 

  • Holst, S., Hermann, D., & Musshoff, O. (2015). Anchoring effects in an experimental auction – Are farmers anchored? Journal of Economic Psychology, 48, 106–117.

    Article  Google Scholar 

  • Iyer, P., Bozzola, M., Hirsch, S., Meraner, M., & Finger, R. (2020). Measuring farmer risk preferences in Europe: A systematic review. Journal of Agricultural Economics, 71(1), 3–26.

    Article  Google Scholar 

  • Ji, H., Yun, Y., Lee, S., Kim, K., & Lim, H. (2018). An adaptable UI/UX considering user’s cognitive and behavior information in a distributed environment. Cluster Computing, 21, 1045–1058.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Kariyasa, K., & Dewi, Y. A. (2013). Analysis of factors affecting adoption of integrated crop management farmer field school (ICM-FFS) in swampy areas. International Journal of Food and Agricultural Economics, 1(2), 29–38.

    Google Scholar 

  • Keelan, C., Thorne, F., Flanagan, P., Newman, C., & Mullins, E. (2009). Predicted willingness of Irish farmers to adopt GM technology. AgBioforum, 12(3–4), 394–403.

    Google Scholar 

  • Kuehne, G., Llewellyn, R., Pannell, D. J., Wilkinson, R., Dolling, P., Ouzman, J., & Ewing, M. (2017). Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agricultural Systems, 156, 115–125.

    Article  Google Scholar 

  • Kumar, G., Engle, C., & Tucker, C. (2018). Factors driving aquaculture technology adoption. Journal of the World Aquaculture Society, 49(3), 447–476.

    Article  Google Scholar 

  • Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.

    Article  Google Scholar 

  • Lavison, K. R., (2013). Factors influencing the adoption of organic fertilizers in vegetable production in Accra. Thesis submitted for the Master of Philosophy Degree in Agribusiness, University of Ghana, Legon.

    Google Scholar 

  • Lindblom, J., Rambusch, J., Ljung, M., & Lundstrom, C. (2013). Decision-making in agriculture—Farmers’ lifeworld in theory and practice. 21st European Seminar on Extension Education (ESEE13).

    Google Scholar 

  • Lowenberg-DeBoer, J. (2000). Comment on site-specific crop management: Adoption patterns and incentives. Review of Agricultural Economics, 22(1), 245–247.

    Article  Google Scholar 

  • Mauceri, M., Alwang, J., Norton, G., & Barrera, V. (2007). Effectiveness of integrated pest management dissemination techniques: A case study of potato farmers in Carchi, Ecuador. Journal of Agricultural and Applied Economics, 39(3), 765–780.

    Article  Google Scholar 

  • McCown, R. L., Carberry, P. S., Hochman, Z., Dalgliesh, N. P., & Foale, M. A. (2009). Re-inventing model based decision support with Australian dryland farmers: Changing intervention concepts during 17 years of action research. Crop and Pasture Science, 60(11), 1017–1030.

    Article  Google Scholar 

  • McDonald, R., Heanue, K., Pierce, K., & Horan, B. (2016). Factors influencing new entrant dairy farmer’s decision-factors influencing new entrant dairy farmer’s decision-making process around technology adoption. Journal of Agricultural Education and Extension, 22, 163–177.

    Article  Google Scholar 

  • Meijer, S. S., Catacutan, D., Ajayi, O. C., & Sileshi, G. W. (2015). The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. International Journal of Agricultural Sustainability, 13(1), 40–54.

    Article  Google Scholar 

  • Mignouna, D. B., Manyong, V. M., Rusike, J., Mutabazi, K. D. S., & Senkondo, E. M. M. (2011). Determinants of imazapyr-resistant maize technologies and its impact on household income in Western Kenya. AgBioforum, 14(3), 158–163.

    Google Scholar 

  • Mohamed, K. S., & Temu, A. E. (2008). Access to credit and its effect on the adoption of agricultural technologies: The case of Zanzibar. Savings and Development, 32, 45–89.

    Google Scholar 

  • Muzari, W., Gatsi, W., & Muvhunzi, S. (2012). The impacts of technology adoption on smallholder agricultural productivity in sub-saharan Africa: A review. Journal of Sustainable Development, 5(8), 69–77.

    Article  Google Scholar 

  • Pannell, D. J. (1991). Pests and pesticides, risk and risk aversion. Agricultural Economics, 5(4), 361–383.

    Article  Google Scholar 

  • Pannell, D. J. (1995). Optimal herbicide strategies for weed control under risk aversion. Review of Agricultural Economics, 17(3), 337–350.

    Article  Google Scholar 

  • Parker, C., & Sinclair, M. (2001). User-centred design does make a difference. The case of decision support systems in crop production. Behaviour and Information Technology, 20(6), 449–460.

    Article  Google Scholar 

  • Payne, J. W., Bettman, J., & Johnson, E. J. (1993). The adaptive decision maker. Cambridge University Press.

    Book  Google Scholar 

  • Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology, 8, 61–69.

    Article  Google Scholar 

  • Porter, M. E. (1985). Competitive advantage (p. 37). New York Free Press.

    Google Scholar 

  • Rahn, C. R. (2004). The use of models to optimise production of field vegetable crops with minimal impact on the environment. Acta Horticulturae, 654, 81–88.

    Article  Google Scholar 

  • Rahn, C. R. (2013). The challenges of knowledge transfer in the implementation of the nitrates directive. In D’Haene, K., Vandecasteele, B., De Vis, R., Crappé, S., Callens, D., Mechant, E., Hofman, G., De Neve, S. (Eds.), NUTRIHORT (nutrient management, innovative techniques and nutrient legislation in intensive horticulture for an improved water quality) proceedings, Ghent, pp. 9–15.

    Google Scholar 

  • Rahn, C. R. (2018). Challenges of devising nitrogen recommendation systems for open field vegetables. Proceedings V international symposium on ecologically sound fertilization strategies for field vegetable production, Beijing May 2015. Acta Horticulturae, 1192, 11–20.

    Article  Google Scholar 

  • Rahn, C. R., Greenwood, D. J., & Draycott, A. (1996). Prediction of nitrogen fertiliser requirement with HRI WELL_N computer model. In Proceedings of 8th nitrogen workshop, Ghent, 5-8 September 1994 (Progress in nitrogen cycling studies) (pp. 255–258). Kluwer.

    Google Scholar 

  • Rahn, C. R., Mead, A., Draycott, A., Lillywhite, R., & Salo, T. (2001). A sensitivity analysis of the prediction of the nitrogen fertiliser requirement of cauliflower crops using the HRI WELL_N computer model. The Journal of Agricultural Science, 137, 55–69.

    Article  Google Scholar 

  • Ridgley, A. M., & Brush, S. (1992). Social factors and selective technology adoption: The case of integrated pest management. Human Organization, 51(4), 367–378.

    Article  Google Scholar 

  • Rogers, E. M. (1962). Diffusion of innovations (1st ed.). Free Press.

    Google Scholar 

  • Rossi, V., Salinari, F., Poni, S., Caffi, T., & Bettati, T. (2014). Addressing the implementation problem in agricultural decision support systems. Computers and Electronics in Agriculture, 100, 88–99.

    Article  Google Scholar 

  • Samiee, A., Rezvanfar, A., & Faham, E. (2009). Factors influencing the adoption of Integrated Pest Management (IPM) by wheat growers in Varamin county, Iran. African Journal of Agricultural Research, 4(5), 491–497.

    Google Scholar 

  • Simtowe, F., & Zeller, M. (2006). The impact of access to credit on the adoption of hybrid maize in Malawi: An empirical test of an agricultural household model under credit market failure. 2007 second international conference, August 20–22, 2007, Accra, Ghana 52076, African Association of Agricultural Economists (AAAE).

    Google Scholar 

  • Sinja, J., Karugia, J., Baltenweck, I., Waithaka, M.M., Miano, M.D., Nyikal, R., & Romney, D., (2004). Farmer perception of technology and its impact on technology uptake: The case of fodder legume in Central Kenya Highlands. 2004 Inaugural Symposium, December 6–8, 2004, Nairobi, Kenya 9543, African Association of Agricultural Economists (AAAE).

    Google Scholar 

  • Smith, L. (2015). PPM-Nutrients: Policy and practice for management of nutrients. Available online at https://www.soas.ac.uk/cedep/research/ppm-nutrients/. Accessed 14 Dec 2021.

  • Smith, J., Smith, P., & Addiscott, T. (1996). Quantitative methods to evaluate and compare soil organic matter (SOM) models. In P. Powlson, P. Smith and J. Smith (Eds.), Evaluation of soil organic matter models (NATO ASI, 1(38): 181–200).

    Google Scholar 

  • Smith, L., Siciliano, G., Inman, A., Rahn, C., Bellarby, J., Surridge, B., Haygarth, P., Xin, L., Guilong, Z., Ji, L., Zhou, J., Meng, F. & Burke, S., (2015). Delivering improved nutrient stewardship in China: The knowledge, attitudes and practices of farmers and advisers (SAIN policy brief 13). UK-China Sustainable Agricultural Innovation Network (SAIN).

    Google Scholar 

  • Thorburn, P. J., Jakku, E., Webster, A. J., & Everingham, Y. L. (2011). Agricultural decision support system facilitating co-learning. International Journal of Agricultural Sustainability, 9(2), 322–333.

    Article  Google Scholar 

  • Uaiene, R. N. (2011). Determinants of technology adoption in Mozambique. In 10th African crop science conference proceedings, Maputo, Mozambique, 10–13 October 2011 (p. 375) ref. 10.

    Google Scholar 

  • Uematsu, H., & Mishra, A. K. (2010). Can education be a barrier to technology adoption? Agricultural & Applied Economics Association 2010 AAEA 38.

    Google Scholar 

  • Van Meensel, J., Lauwers, L., Dempen, I., Dessein, J., & Van Huylenbroeck, G. (2012). Effect of a participatory approach on the successful development of agricultural decision support systems: The case of Pigs2win. Decision Support Systems, 54(1), 164–172.

    Article  Google Scholar 

  • Villano, R., Bravo-Ureta, B., Solis, D., & Fleming, E. (2015). Modern rice technologies and productivity in the Philippines: Disentangling technology from managerial gaps’. Journal of Agricultural Economics, 66, 129–154.

    Article  Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton University Press.

    Google Scholar 

  • Waller, B. E., Casey, W., Hoy, J. L., Henderson, B. S., & Welty, C. (1998). Matching innovations with potential users, a case study of potato IPM practices. Agriculture, Ecosystems and Environment, 70(2–3), 203–215.

    Article  Google Scholar 

  • Williams, R., Brown, H., Dunbier, M., Edmeades, D., Hill, R., Metherell A., Rahn C., & Thorburn P. (2013). A critical examination of the role of Overseer in modelling nitrate losses from arable crops. Available online at http://flrc.massey.ac.nz/workshops/13/Manuscripts/Paper_Williams_2013.pdf. Accessed 14 Dec 2021.

  • Woodward, S. J. R., Romera, A. J., Beskow, W. B., & Lovatt, S. J. (2008). Better simulation modelling to support farming systems innovation: Review and synthesis. New Zealand Journal of Agricultural Research, 51(3), 235–252. https://doi.org/10.1080/00288230809510452

    Article  Google Scholar 

  • Yaron, D., Dinar, A., & Voet, H. (1992). Innovations on family farms: The Nazareth region in Israel. American Journal of Agricultural Economics, 74(2), 361–370.

    Article  Google Scholar 

  • Zhang, F. S., Chen, X. P., & Chen, Q. (2009). Fertilizer application guideline for main crops of China. Chinese Agricultural University press.

    Google Scholar 

Download references

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaka, J., García-Gallego, A., Georgantzis, N., Rahn, C., Tisserand, JC. (2023). Development and Adoption of Model-Based Practices in Precision Agriculture. In: Cammarano, D., van Evert, F.K., Kempenaar, C. (eds) Precision Agriculture: Modelling. Progress in Precision Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-031-15258-0_4

Download citation

Publish with us

Policies and ethics