Skip to main content

Visceral Sensitivity

  • Chapter
  • First Online:
Pediatric Neurogastroenterology
  • 751 Accesses

Abstract

The gastrointestinal (GI) tract has a rich afferent innervation that can detect mechanical, chemical, and thermal stimuli. Sensory information reaching the cortex can give rise to conscious sensations, painful or not. Abnormal heightened visceral sensitivity may lead to functional gastrointestinal disorders, and visceral hypersensitivity is considered a crucial pathophysiological factor. This chapter covers the description of the sensory innervation of the GI tract and the pathways followed in the central nervous system. The physiology of visceral sensitivity and the mechanisms leading to visceral hypersensitivity in children and adults are also described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drossman DA, Camilleri M, Mayer EA, Whitehead WE. AGA technical review on irritable bowel syndrome. Gastroenterology. 2002;123(6):2108–31.

    PubMed  Google Scholar 

  2. Mayer EA, Raybould HE. Role of visceral afferent mechanisms in functional bowel disorders. Gastroenterology. 1990;99(6):1688–704.

    CAS  PubMed  Google Scholar 

  3. Aziz Q, Thompson DG. Brain-gut axis in health and disease. Gastroenterology. 1998;114(3):559–78.

    CAS  PubMed  Google Scholar 

  4. Prechtl JC, Powley TL. The fiber composition of the abdominal vagus of the rat. Anat Embryol (Berl). 1990;181(2):101–15.

    CAS  PubMed  Google Scholar 

  5. Dockray GJ. Enteroendocrine cell signalling via the vagus nerve. Curr Opin Pharmacol. 2013;13(6):954–8.

    CAS  PubMed  Google Scholar 

  6. Ray BS, Neill CL. Abdominal visceral sensation in man. Ann Surg. 1947;126:709–24.

    PubMed  PubMed Central  Google Scholar 

  7. Bielefeldt K, Christianson JA, Davis BM. Basic and clinical aspects of visceral sensation: transmission in the CNS. Neurogastroenterol Motil. 2005;17(4):488–99.

    CAS  PubMed  Google Scholar 

  8. Berthoud HR, Blackshaw LA, Brookes SJ, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil. 2004;16(Suppl 1):28–33.

    PubMed  Google Scholar 

  9. Brierley SM. Molecular basis of mechanosensitivity. Auton Neurosci. 2010;153(1–2):58–68.

    CAS  PubMed  Google Scholar 

  10. Blackshaw LA, Brookes SJ, Grundy D, Schemann M. Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil. 2007;19(1 Suppl):1–19.

    CAS  PubMed  Google Scholar 

  11. Miranda A, Mickle A, Medda B, et al. Altered mechanosensitive properties of vagal afferent fibers innervating the stomach following gastric surgery in rats. Neuroscience. 2009;162(4):1299–306.

    CAS  PubMed  Google Scholar 

  12. Mazet B. Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch. 2015;467(1):191–200.

    CAS  PubMed  Google Scholar 

  13. Brierley SM, Hibberd TJ, Spencer NJ. Spinal afferent innervation of the colon and Rectum. Front Cell Neurosci. 2018;12:467.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Feng B, Gebhart GF. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am J Physiol Gastrointest Liver Physiol. 2011;300(1):G170–80.

    CAS  PubMed  Google Scholar 

  15. Raybould HE. Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci. 2010;153(1–2):41–6.

    CAS  PubMed  Google Scholar 

  16. Braun T, Voland P, Kunz L, Prinz C, Gratzl M. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology. 2007;132(5):1890–901.

    CAS  PubMed  Google Scholar 

  17. Bertrand PP, Kunze WA, Bornstein JC, Furness JB, Smith ML. Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am J Phys. 1997;273(2 Pt 1):G422–35.

    CAS  Google Scholar 

  18. Camilleri M. Peripheral mechanisms in irritable bowel syndrome. N Engl J Med. 2012;367(17):1626–35.

    CAS  PubMed  Google Scholar 

  19. Kirkup AJ, Brunsden AM, Grundy D. Receptors and transmission in the brain-gut axis: potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol. 2001;280(5):G787–94.

    CAS  PubMed  Google Scholar 

  20. Christianson JA, Bielefeldt K, Altier C, Cenac N, Davis BM, Gebhart GF, et al. Development, plasticity and modulation of visceral afferents. Brain Res Rev. 2009;60(1):171–86.

    CAS  PubMed  Google Scholar 

  21. Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O’Donnell TA, et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology. 2009;137(6):2084–95.e3.

    CAS  PubMed  Google Scholar 

  22. Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N. Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology. 2008;135(3):–937, 46.e1–2.

    Google Scholar 

  23. Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology. 2008;134(7):2059–69.

    CAS  PubMed  Google Scholar 

  24. Masamichi S, Bin F, Gebhart GF. Peripheral and central P2X3 receptor contributions to colon mechanosensitivity and hypersensitivity in the mouse. Gastroenterology. 2009;137(6):2096–104.

    Google Scholar 

  25. Jones RC 3rd, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci. 2005;25(47):10981–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones RC 3rd, Otsuka E, Wagstrom E, Jensen CS, Price MP, Gebhart GF. Short-term sensitization of colon mechanoreceptors is associated with long-term hypersensitivity to colon distention in the mouse. Gastroenterology. 2007;133(1):184–94.

    PubMed  Google Scholar 

  27. Cenac N, Andrews CN, Holzhausen M, Chapman K, Cottrell G, Andrade-Gordon P, et al. Role for protease activity in visceral pain in irritable bowel syndrome. J Clin Invest. 2007;117(3):636–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Auge C, Balz-Hara D, Steinhoff M, Vergnolle N, Cenac N. Protease-activated receptor-4 (PAR 4): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterol Motil. 2009;21(11):1189–e107.

    CAS  PubMed  Google Scholar 

  29. Zielinska M, Jarmuz A, Wasilewski A, Salaga M, Fichna J. Role of transient receptor potential channels in intestinal inflammation and visceral pain: novel targets in inflammatory bowel diseases. Inflamm Bowel Dis. 2015;21(2):419–27.

    PubMed  Google Scholar 

  30. Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283(2):248–68.

    CAS  PubMed  Google Scholar 

  31. Mussa BM, Verberne AJ. The dorsal motor nucleus of the vagus and regulation of pancreatic secretory function. Exp Physiol. 2013;98(1):25–37.

    CAS  PubMed  Google Scholar 

  32. Van Oudenhove L, Demyttenaere K, Tack J, Aziz Q. Central nervous system involvement in functional gastrointestinal disorders. Best Pract Res Clin Gastroenterol. 2004;18(4):663–80.

    PubMed  Google Scholar 

  33. Palecek J. The role of dorsal columns pathway in visceral pain. Physiol Res. 2004;53(Suppl 1):S125–30.

    PubMed  Google Scholar 

  34. Mayer EA, Gupta A, Kilpatrick LA, Hong JY. Imaging brain mechanisms in chronic visceral pain. Pain. 2015;156(Suppl 1):S50–63.

    PubMed  PubMed Central  Google Scholar 

  35. Tillisch K, Mayer EA, Labus JS. Quantitative meta-analysis identifies brain regions activated during rectal distension in irritable bowel syndrome. Gastroenterology. 2011;140(1):91–100.

    PubMed  Google Scholar 

  36. Rosenberger C, Thurling M, Forsting M, Elsenbruch S, Timmann D, Gizewski ER. Contributions of the cerebellum to disturbed central processing of visceral stimuli in irritable bowel syndrome. Cerebellum. 2013;12(2):194–8.

    PubMed  Google Scholar 

  37. Yarnitsky D, Arendt-Nielsen L, Bouhassira D, Edwards RR, Fillingim RB, Granot M, Hansson P, Lautenbacher S, Marchand S, Wilder-Smith O. Recommendations on terminology and practice of psychophysical DNIC testing. Eur J Pain. 2010;14:339.

    PubMed  Google Scholar 

  38. Albusoda A, Ruffle JK, Friis KA, Gysan MR, Drewes AM, Aziz Q, Farmer AD. Systematic review with meta-analysis: conditioned pain modulation in patients with the irritable bowel syndrome. Aliment Pharmacol Ther. 2018;48(8):797–806.

    PubMed  Google Scholar 

  39. Faure C, Wieckowska A. Somatic referral of visceral sensations and rectal sensory threshold for pain in children with functional gastrointestinal disorders. J Pediatr. 2007;150(1):66–71.

    PubMed  Google Scholar 

  40. Van Ginkel R, Voskuijl WP, Benninga MA, Taminiau JA, Boeckxstaens GE. Alterations in rectal sensitivity and motility in childhood irritable bowel syndrome. Gastroenterology. 2001;120(1):31–8.

    PubMed  Google Scholar 

  41. Iovino P, Tremolaterra F, Boccia G, Miele E, Ruju FM, Staiano A. Irritable bowel syndrome in childhood: visceral hypersensitivity and psychosocial aspects. Neurogastroenterol Motil. 2009;21(9):940–e74.

    CAS  PubMed  Google Scholar 

  42. Di Lorenzo C, Youssef NN, Sigurdsson L, Scharff L, Griffiths J, Wald A. Visceral hyperalgesia in children with functional abdominal pain. J Pediatr. 2001;139(6):838–43.

    PubMed  Google Scholar 

  43. Halac U, Noble A, Faure C. Rectal sensory threshold for pain is a diagnostic marker of irritable bowel syndrome and functional abdominal pain in children. J Pediatr. 2010;156(1):60–5.e1.

    PubMed  Google Scholar 

  44. Camilleri M, McKinzie S, Busciglio I, Low PA, Sweetser S, Burton D, et al. Prospective study of motor, sensory, psychologic, and autonomic functions in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2008;6(7):772–81.

    PubMed  PubMed Central  Google Scholar 

  45. Mertz H, Naliboff B, Munakata J, Niazi N, Mayer E. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology. 1995;109(1):40–52.

    CAS  PubMed  Google Scholar 

  46. Whitehead WE, Holtkotter B, Enck P, Hoelzl R, Holmes KD, Anthony J, et al. Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology. 1990;98(5 Pt 1):1187–92.

    CAS  PubMed  Google Scholar 

  47. Bouin M, Plourde V, Boivin M, Riberdy M, Lupien F, Laganiere M, et al. Rectal distention testing in patients with irritable bowel syndrome: sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology 2002;122(7):1771–7.

    Google Scholar 

  48. Schmulson M, Chang L, Naliboff B, Lee OY, Mayer EA. Correlation of symptom criteria with perception thresholds during rectosigmoid distension in irritable bowel syndrome patients. Am J Gastroenterol. 2000;95(1):152–6.

    CAS  PubMed  Google Scholar 

  49. Bradette M, Delvaux M, Staumont G, Fioramonti J, Bueno L, Frexinos J. Evaluation of colonic sensory thresholds in IBS patients using a barostat. Definition of optimal conditions and comparison with healthy subjects. Dig Dis Sci. 1994;39(3):449–57.

    CAS  PubMed  Google Scholar 

  50. Bouin M, Meunier P, Riberdy-Poitras M, Poitras P. Pain hypersensitivity in patients with functional gastrointestinal disorders: a gastrointestinal-specific defect or a general systemic condition? Dig Dis Sci. 2001;46(11):2542–8.

    CAS  PubMed  Google Scholar 

  51. Naliboff BD, Munakata J, Fullerton S, Gracely RH, Kodner A, Harraf F, et al. Evidence for two distinct perceptual alterations in irritable bowel syndrome. Gut. 1997;41(4):505–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Spetalen S, Jacobsen MB, Vatn MH, Blomhoff S, Sandvik L. Visceral sensitivity in irritable bowel syndrome and healthy volunteers: reproducibility of the rectal barostat. Dig Dis Sci. 2004;49(7–8):1259–64.

    PubMed  Google Scholar 

  53. Coffin B, Azpiroz F, Guarner F, Malagelada JR. Selective gastric hypersensitivity and reflex hyporeactivity in functional dyspepsia. Gastroenterology. 1994;107(5):1345–51.

    CAS  PubMed  Google Scholar 

  54. Tack J, Caenepeel P, Fischler B, Piessevaux H, Janssens J. Symptoms associated with hypersensitivity to gastric distention in functional dyspepsia. Gastroenterology. 2001;121(3):526–35.

    CAS  PubMed  Google Scholar 

  55. Tack J, Caenepeel P, Corsetti M, Janssens J. Role of tension receptors in dyspeptic patients with hypersensitivity to gastric distention. Gastroenterology. 2004;127(4):1058–66.

    PubMed  Google Scholar 

  56. Mertz H, Fullerton S, Naliboff B, Mayer EA. Symptoms and visceral perception in severe functional and organic dyspepsia. Gut. 1998;42(6):814–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bouin M, Lupien F, Riberdy M, Boivin M, Plourde V, Poitras P. Intolerance to visceral distension in functional dyspepsia or irritable bowel syndrome: an organ specific defect or a pan intestinal dysregulation? Neurogastroenterol Motil. 2004;16(3):311–4.

    CAS  PubMed  Google Scholar 

  58. Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology. 2002;122(7):2032–48.

    PubMed  Google Scholar 

  59. Mayer EA, Bradesi S, Chang L, Spiegel BM, Bueller JA, Naliboff BD. Functional GI disorders: from animal models to drug development. Gut. 2008;57(3):384–404.

    CAS  PubMed  Google Scholar 

  60. Langshaw AH, Rosen JM, Pensabene L, et al. Overlap between functional abdominal pain disorders and organic diseases in children. Sobreposición entre los trastornos funcionales de dolor abdominal y enfermedades orgánicas en niños. Rev Gastroenterol Mex (Engl Ed). 2018;83(3):268–74.

    CAS  PubMed  Google Scholar 

  61. Watson KL Jr, Kim SC, Boyle BM, Saps M. Prevalence and impact of functional abdominal pain disorders in children with inflammatory bowel diseases (IBD-FAPD). J Pediatr Gastroenterol Nutr. 2017;65(2):212–7.

    PubMed  Google Scholar 

  62. Saps M, Dhroove G, Chogle A. Henoch-Schonlein purpura leads to functional gastrointestinal disorders. Dig Dis Sci. 2011;56(6):1789–93.

    PubMed  Google Scholar 

  63. Saps M, Adams P, Bonilla S, Nichols-Vinueza D. Abdominal pain and functional gastrointestinal disorders in children with celiac disease. J Pediatr. 2013;162(3):505–9.

    PubMed  Google Scholar 

  64. Lynch MK, Dimmitt RA, Goodin BR. Evidence of disturbed sleep in children with Eosinophilic esophagitis and persistent Epigastric pain. J Pediatr Psychol. 2018;43(3):331–41.

    PubMed  Google Scholar 

  65. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology. 2009;136(6):1979–88.

    PubMed  Google Scholar 

  66. Pensabene L, Talarico V, Concolino D, Ciliberto D, Campanozzi A, Gentile T, et al. Postinfectious functional gastrointestinal disorders in children: a multicenter prospective study. J Pediatr. 2015;166(4):903–7.e1.

    PubMed  Google Scholar 

  67. Tornblom H, Lindberg G, Nyberg B, Veress B. Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology. 2002;123(6):1972–9.

    PubMed  Google Scholar 

  68. Chadwick VS, Chen W, Shu D, Paulus B, Bethwaite P, Tie A, et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology. 2002;122(7):1778–83.

    PubMed  Google Scholar 

  69. Shulman RJ, Eakin MN, Czyzewski DI, Jarrett M, Ou CN. Increased gastrointestinal permeability and gut inflammation in children with functional abdominal pain and irritable bowel syndrome. J Pediatr. 2008;153(5):646–50.

    PubMed  PubMed Central  Google Scholar 

  70. Liebregts T, Adam B, Bredack C, Roth A, Heinzel S, Lester S, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology. 2007;132(3):913–20.

    CAS  PubMed  Google Scholar 

  71. Camilleri M, Lasch K, Zhou W. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2012;303(7):G775–85.

    CAS  PubMed  Google Scholar 

  72. Wilcz-Villega E, McClean S, O’Sullivan M. Reduced E-cadherin expression is associated with abdominal pain and symptom duration in a study of alternating and diarrhea predominant IBS. Neurogastroenterol Motil. 2014;26(3):316–25.

    CAS  PubMed  Google Scholar 

  73. Martinez C, Lobo B, Pigrau M, Ramos L, Gonzalez-Castro AM, Alonso C, et al. Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut. 2013;62(8):1160–8.

    CAS  PubMed  Google Scholar 

  74. Gue M, Del Rio-Lacheze C, Eutamene H, Theodorou V, Fioramonti J, Bueno L. Stress-induced visceral hypersensitivity to rectal distension in rats: role of CRF and mast cells. Neurogastroenterol Motil. 1997;9(4):271–9.

    CAS  PubMed  Google Scholar 

  75. Eutamene H, Theodorou V, Fioramonti J, Bueno L. Acute stress modulates the histamine content of mast cells in the gastrointestinal tract through interleukin-1 and corticotropin-releasing factor release in rats. J Physiol. 2003;553(Pt 3):959–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology. 2004;126(3):693–702.

    PubMed  Google Scholar 

  77. Klooker TK, Braak B, Koopman KE, Welting O, Wouters MM, van der Heide S, et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut. 2010;59(9):1213–21.

    CAS  PubMed  Google Scholar 

  78. Di Nardo G, Barbara G, Cucchiara S, Cremon C, Shulman RJ, Isoldi S, et al. Neuroimmune interactions at different intestinal sites are related to abdominal pain symptoms in children with IBS. Neurogastroenterol Motil. 2014;26(2):196–204.

    PubMed  Google Scholar 

  79. Willot S, Gauthier C, Patey N, Faure C. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2012;24(8):734–9, e347.

    Google Scholar 

  80. Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut. 2016;65(1):155–68.

    CAS  PubMed  Google Scholar 

  81. Tache Y, Million M. Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia. J Neurogastroenterol Motil. 2015;21(1):8–24.

    PubMed  PubMed Central  Google Scholar 

  82. van den Wijngaard RM, Klooker TK, Welting O, Stanisor OI, Wouters MM, van der Coelen D, et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol Motil. 2009;21(10):1107–e94.

    PubMed  Google Scholar 

  83. Barreau F, Salvador-Cartier C, Houdeau E, Bueno L, Fioramonti J. Long-term alterations of colonic nerve-mast cell interactions induced by neonatal maternal deprivation in rats. Gut. 2008;57(5):582–90.

    CAS  PubMed  Google Scholar 

  84. Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G, et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology. 2007;132(1):26–37.

    CAS  PubMed  Google Scholar 

  85. Dothel G, Barbaro MR, Boudin H, Vasina V, Cremon C, Gargano L, et al. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology. 2015;148(5):1002–11.

    CAS  PubMed  Google Scholar 

  86. Brown IA, Gulbransen BD. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G39–52.

    PubMed  Google Scholar 

  87. Grubišić V, Gulbransen BD. Enteric glia: the most alimentary of all glia. J Physiol. 2017;595:557–70.

    PubMed  Google Scholar 

  88. McClain JL, Fried DE, Gulbransen BD. Agonist-evoked Ca2+ signaling in enteric glia drives neural programs that regulate intestinal motility in mice. Cell Mol Gastroenterol Hepatol. 2015;1:631–45.

    PubMed  PubMed Central  Google Scholar 

  89. Brown IA, McClain JL, Watson RE, Patel BA, Gulbransen BD. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2:77–91.

    PubMed  Google Scholar 

  90. McClain JL, Grubišić V, Fried D, Gomez-Suarez RA, Leinninger GM, Sévigny J, Parpura V, Gulbransen BD. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology. 2014;146:497–507.

    CAS  PubMed  Google Scholar 

  91. Grubišić V, Gulbransen BD. Enteric glial activity regulates secretomotor function in the mouse colon but does not acutely affect gut permeability. J Physiol. 2017;595:3409–24.

    PubMed  PubMed Central  Google Scholar 

  92. Savidge TC, Newman P, Pothoulakis C, Ruhl A, Neunlist M, Bourreille A, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology. 2007;132(4):1344–58.

    CAS  PubMed  Google Scholar 

  93. Sharkey KA. Emerging roles for enteric glia in gastrointestinal disorders. J Clin Invest. 2015;125(3):918–25.

    PubMed  PubMed Central  Google Scholar 

  94. Neunlist M, Schemann M. Nutrient-induced changes in the phenotype and function of the enteric nervous system. J Physiol. 2014;592(14):2959–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Fujikawa Y, Tominaga K, Tanaka F, Tanigawa T, Watanabe T, Fujiwara Y, et al. Enteric glial cells are associated with stress-induced colonic hyper-contraction in maternally separated rats. Neurogastroenterol Motil. 2015;27(7):1010–23.

    CAS  PubMed  Google Scholar 

  96. Shin A, Preidis GA, Shulman R, Kashyap PC. The gut microbiome in adult and pediatric functional gastrointestinal disorders. Clin Gastroenterol Hepatol. 2019;17(2):256–74.

    CAS  PubMed  Google Scholar 

  97. Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, Pettersson S, Pachnis V. The gut microbiota keeps enteric glial cells on the move; prospective roles of the gut epithelium and immune system. Gut Microbes. 2015;6:398–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.

    CAS  PubMed  Google Scholar 

  99. Kabouridis PS, Lasrado R, McCallum S, Chng S, Snippert HJ, Clevers H, Pettersson S, Pachnis V. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015;85:289–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ceuleers H, Spaendonk H, Hanning N, Heirbaut J, Lambeir A-M, Joossens J, Augustyns K, Man JG, Meester I, Winter BY. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: the role of proteases. World J Gastroenterol. 2016;22:10275–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Garrido R, Segura B, Zhang W, Mulholland M. Presence of functionally active protease-activated receptors 1 and 2 in myenteric glia. J Neurochem. 2002;83:556–64.

    CAS  PubMed  Google Scholar 

  102. Gershon MD. Review article: roles played by 5-hydroxytryptamine in the physiology of the bowel. Aliment Pharmacol Ther. 1999;13(Suppl 2):15–30.

    PubMed  Google Scholar 

  103. Gershon MD. Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol. 2005;39(5 Suppl 3):S184–93.

    PubMed  Google Scholar 

  104. Tack J, Sarnelli G. Serotonergic modulation of visceral sensation: upper gastrointestinal tract. Gut. 2002;51(90001):77–80.

    Google Scholar 

  105. Camilleri M. Serotonergic modulation of visceral sensation: lower gut. Gut. 2002;51(90001):81i–6.

    Google Scholar 

  106. Mawe GM, Coates MD, Moses PL. Review article: intestinal serotonin signalling in irritable bowel syndrome. Aliment Pharmacol Ther. 2006;23(8):1067–76.

    CAS  PubMed  Google Scholar 

  107. Vermeulen W, De Man JG, Pelckmans PA, De Winter BY. Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol. 2014;20(4):1005–20.

    PubMed  PubMed Central  Google Scholar 

  108. Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395–403.

    CAS  PubMed  Google Scholar 

  109. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen JX, Pan H, Rothman TP, Wade PR, Gershon MD. Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. Am J Phys. 1998;275(3 Pt 1):G433–48.

    CAS  Google Scholar 

  111. Chen JJ, Li Z, Pan H, Murphy DL, Tamir H, Koepsell H, et al. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J Neurosci. 2001;21(16):6348–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wade PR, Chen J, Jaffe B, Kassem IS, Blakely RD, Gershon MD. Localization and function of a 5-HT transporter in crypt epithelia of the gastrointestinal tract. J Neurosci. 1996;16(7):2352–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Fukudo S, Kanazawa M, Mizuno T, Hamaguchi T, Kano M, Watanabe S, et al. Impact of serotonin transporter gene polymorphism on brain activation by colorectal distention. NeuroImage. 2009;47(3):946–51.

    CAS  PubMed  Google Scholar 

  114. Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H, et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology. 2004;126(7):1657–64.

    CAS  PubMed  Google Scholar 

  115. Faure C, Patey N, Gauthier C, Brooks EM, Mawe GM. Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients. Gastroenterology. 2010;139(1):249–58.

    CAS  PubMed  Google Scholar 

  116. Park JH, Rhee PL, Kim G, Lee JH, Kim YH, Kim JJ, et al. Enteroendocrine cell counts correlate with visceral hypersensitivity in patients with diarrhoea-predominant irritable bowel syndrome. Neurogastroenterol Motil. 2006;18(7):539–46.

    CAS  PubMed  Google Scholar 

  117. Kawabata A, Matsunami M, Sekiguchi F. Gastrointestinal roles for proteinase-activated receptors in health and disease. Br J Pharmacol. 2008;153(Suppl 1):S230–40.

    CAS  PubMed  Google Scholar 

  118. Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med. 2000;6(2):151–8.

    CAS  PubMed  Google Scholar 

  119. Hyun E, Andrade-Gordon P, Steinhoff M, Vergnolle N. Protease-activated receptor-2 activation: a major actor in intestinal inflammation. Gut. 2008;57(9):1222–9.

    CAS  PubMed  Google Scholar 

  120. Coelho AM, Vergnolle N, Guiard B, Fioramonti J, Bueno L. Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats. Gastroenterology. 2002;122(4):1035–47.

    CAS  PubMed  Google Scholar 

  121. Kayssi A, Amadesi S, Bautista F, Bunnett NW, Vanner S. Mechanisms of protease-activated receptor 2-evoked hyperexcitability of nociceptive neurons innervating the mouse colon. J Physiol. 2007;580(Pt. 3):977–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Annahazi A, Gecse K, Dabek M, Ait-Belgnaoui A, Rosztoczy A, Roka R, et al. Fecal proteases from diarrheic-IBS and ulcerative colitis patients exert opposite effect on visceral sensitivity in mice. Pain. 2009;144(1–2):209–17.

    CAS  PubMed  Google Scholar 

  123. Clapham DE. TRP channels as cellular sensors. Nature. 2003;426(6966):517–24.

    CAS  PubMed  Google Scholar 

  124. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–47.

    CAS  PubMed  Google Scholar 

  125. Winston J, Shenoy M, Medley D, Naniwadekar A, Pasricha PJ. The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats. Gastroenterology. 2007;132(2):615–27.

    CAS  PubMed  Google Scholar 

  126. Miranda A, Nordstrom E, Mannem A, Smith C, Banerjee B, Sengupta JN. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience. 2007;148(4):1021–32.

    CAS  PubMed  Google Scholar 

  127. van Wanrooij SJ, Wouters MM, Van Oudenhove L, Vanbrabant W, Mondelaers S, Kollmann P, et al. Sensitivity testing in irritable bowel syndrome with rectal capsaicin stimulations: role of TRPV1 upregulation and sensitization in visceral hypersensitivity? Am J Gastroenterol. 2014;109(1):99–109.

    PubMed  Google Scholar 

  128. Sugiuar T, Bielefeldt K, Gebhart GF. TRPV1 function in mouse colon sensory neurons is enhanced by metabotropic 5-hydroxytryptamine receptor activation. J Neurosci. 2004;24(43):9521–30.

    PubMed  PubMed Central  Google Scholar 

  129. Wouters MM, Balemans D, Van Wanrooy S, Dooley J, Cibert-Goton V, Alpizar YA, et al. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology. 2016;150(4):875–87.e9.

    CAS  PubMed  Google Scholar 

  130. Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF, et al. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol. 2008;294(5):G1288–98.

    CAS  PubMed  Google Scholar 

  131. Akbar A, Yiangou Y, Facer P, Walters JR, Anand P, Ghosh S. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut. 2008;57(7):923–9.

    CAS  PubMed  Google Scholar 

  132. Cenac N, Altier C, Motta JP, d’Aldebert E, Galeano S, Zamponi GW, et al. Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut. 2010;59(4):481–8.

    CAS  PubMed  Google Scholar 

  133. Poole DP, Pelayo JC, Cattaruzza F, Kuo YM, Gai G, Chiu JV, et al. Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine. Gastroenterology. 2011;141(2):565–75.e4.

    CAS  PubMed  Google Scholar 

  134. Cenac N, Bautzova T, Le Faouder P, Veldhuis NA, Poole DP, Rolland C, et al. Quantification and potential functions of endogenous agonists of transient receptor potential channels in patients with irritable bowel syndrome. Gastroenterology. 2015;149(2):–433, 44.e7.

    Google Scholar 

  135. Mcmillan NA, Creelman CD. Detection theory: a user’s guide. 2nd ed. Mahwah: Laurence Elbaum; 2005. p. 493p.

    Google Scholar 

  136. Clark WC. Pain sensitivity and the report of pain: an introduction to sensory decision theory. Anesthesiology. 1974;40(3):272–87.

    CAS  PubMed  Google Scholar 

  137. Harvey LOJ. Detection sensitivity and response bias. Psychology of Perception. Psychology 4165. Department of Psychology, University of Colorado; 2003.

    Google Scholar 

  138. Dorn SD, Palsson OS, Thiwan SI, Kanazawa M, Clark WC, van Tilburg MA, et al. Increased colonic pain sensitivity in irritable bowel syndrome is the result of an increased tendency to report pain rather than increased neurosensory sensitivity. Gut. 2007;56(9):1202–9.

    PubMed  PubMed Central  Google Scholar 

  139. Corsetti M, Ogliari C, Marino B, Basilisco G. Perceptual sensitivity and response bias during rectal distension in patients with irritable bowel syndrome. Neurogastroenterol Motil. 2005;17(4):541–7.

    CAS  PubMed  Google Scholar 

  140. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.

    PubMed  Google Scholar 

  141. Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci. 2007;27(45):12396–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Miranda A, Peles S, Shaker R, Rudolph C, Sengupta JN. Neonatal nociceptive somatic stimulation differentially modifies the activity of spinal neurons in rats and results in altered somatic and visceral sensation. J Physiol. 2006;572(Pt 3):775–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA. Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology. 2009;136(4):1339–48.e1–2.

    CAS  PubMed  Google Scholar 

  144. Winston JH, Xu GY, Sarna SK. Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology. 2010;138(1):294–304.e3.

    CAS  PubMed  Google Scholar 

  145. Coffin B, Bouhassira D, Sabate JM, Barbe L, Jian R. Alteration of the spinal modulation of nociceptive processing in patients with irritable bowel syndrome. Gut. 2004;53(10):1465–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhou Q, Fillingim RB, Riley JL 3rd, Malarkey WB, Verne GN. Central and peripheral hypersensitivity in the irritable bowel syndrome. Pain. 2010;148(3):454–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Piche M, Arsenault M, Poitras P, Rainville P, Bouin M. Widespread hypersensitivity is related to altered pain inhibition processes in irritable bowel syndrome. Pain. 2010;148(1):49–58.

    PubMed  Google Scholar 

  148. Stabell N, Stubhaug A, Flaegstad T, Mayer E, Naliboff BD, Nielsen CS. Widespread hyperalgesia in adolescents with symptoms of irritable bowel syndrome: results from a large population-based study. J Pain. 2014;15(9):898–906.

    PubMed  Google Scholar 

  149. Williams AE, Heitkemper M, Self MM, Czyzewski DI, Shulman RJ. Endogenous inhibition of somatic pain is impaired in girls with irritable bowel syndrome compared with healthy girls. J Pain. 2013;14(9):921–30.

    PubMed  PubMed Central  Google Scholar 

  150. Liu X, Silverman A, Kern M, Ward BD, Li SJ, Shaker R, Sood MR. Excessive coupling of the salience network with intrinsic neurocognitive brain networks during rectal distension in adolescents with irritable bowel syndrome: a preliminary report. Neurogastroenterol Motil. 2016;28(1):43–53.

    CAS  PubMed  Google Scholar 

  151. Mayer EA, Aziz Q, Coen S, et al. Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol Motil. 2009;21:579–96.

    CAS  PubMed  Google Scholar 

  152. Qi R, Liu C, Ke J, Xu Q, Ye Y, Jia L, Wang F, Zhang LJ, Lu GM. Abnormal amygdala resting-state functional connectivity in irritable bowel syndrome. Am J Neuroradiol. 2016;37(6):1139–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wiley JW, Higgins GA, Athey BD. Stress and glucocorticoid receptor transcriptional programming in time and space: implications for the brain-gut axis. Neurogastroenterol Motil. 2016;28(1):12–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Corsetti M, Akyuz F, Tack J. Targeting tachykinin receptors for the treatment of functional gastrointestinal disorders with a focus on irritable bowel syndrome. Neurogastroenterol Motil. 2015;27(10):1354–70.

    CAS  PubMed  Google Scholar 

  155. Fioramonti J, Bueno L. Role of cannabinoid receptors in the control of gastrointestinal motility and perception. Expert Rev Gastroenterol Hepatol. 2008;2(3):385–97.

    CAS  PubMed  Google Scholar 

  156. Zoppi S, Madrigal JL, Perez-Nievas BG, Marin-Jimenez I, Caso JR, Alou L, et al. Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation. Am J Physiol Gastrointest Liver Physiol. 2012;302(5):G565–71.

    CAS  PubMed  Google Scholar 

  157. Hughes PA, Castro J, Harrington AM, Isaacs N, Moretta M, Hicks GA, et al. Increased kappa-opioid receptor expression and function during chronic visceral hypersensitivity. Gut. 2014;63(7):1199–200.

    PubMed  Google Scholar 

  158. Auteri M, Zizzo MG, Serio R. The GABAergic system and the gastrointestinal physiopathology. Curr Pharm Des. 2015;21(34):4996–5016.

    CAS  PubMed  Google Scholar 

  159. Gosselin RD, O’Connor RM, Tramullas M, Julio-Pieper M, Dinan TG, Cryan JF. Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology. 2010;138(7):2418–25.

    CAS  PubMed  Google Scholar 

  160. Hockley JR, Boundouki G, Cibert-Goton V, McGuire C, Yip PK, Chan C, et al. Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain. 2014;155(10):1962–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology. 2014;147(2):303–13.

    CAS  PubMed  Google Scholar 

  162. Hockley JR, Winchester WJ, Bulmer DC. The voltage-gated sodium channel NaV 1.9 in visceral pain. Neurogastroenterol Motil. 2016;28(3):316–26.

    CAS  PubMed  Google Scholar 

  163. Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol. 2000;10(1):138–45.

    CAS  PubMed  Google Scholar 

  164. Al-Chaer E, Kawasaki M, Pasricha P. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology. 2000;119(5):1276–85.

    CAS  PubMed  Google Scholar 

  165. Liu LS, Winston JH, Shenoy MM, Song GQ, Chen JD, Pasricha PJ. A rat model of chronic gastric sensorimotor dysfunction resulting from transient neonatal gastric irritation. Gastroenterology. 2008;134(7):2070–9.

    PubMed  Google Scholar 

  166. Barreau F, Ferrier L, Fioramonti J, Bueno L. Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut. 2004;53(4):501–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Smith C, Nordstrom E, Sengupta JN, Miranda A. Neonatal gastric suctioning results in chronic visceral and somatic hyperalgesia: role of corticotropin releasing factor. Neurogastroenterol Motil. 2007;19(8):692–9.

    CAS  PubMed  Google Scholar 

  168. Peters JW, Schouw R, Anand KJ, van Dijk M, Duivenvoorden HJ, Tibboel D. Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain. 2005;114(3):444–54.

    PubMed  Google Scholar 

  169. Wollgarten-Hadamek I, Hohmeister J, Demirakca S, Zohsel K, Flor H, Hermann C. Do burn injuries during infancy affect pain and sensory sensitivity in later childhood? Pain. 2009;141(1–2):165–72.

    PubMed  Google Scholar 

  170. Saps M, Bonilla S. Early life events: infants with pyloric stenosis have a higher risk of developing chronic abdominal pain in childhood. J Pediatr. 2011;159(4):551–4.e1.

    PubMed  Google Scholar 

  171. Videlock EJ, Adeyemo M, Licudine A, Hirano M, Ohning G, Mayer M, et al. Childhood trauma is associated with hypothalamic-pituitary-adrenal axis responsiveness in irritable bowel syndrome. Gastroenterology. 2009;137(6):1954–62.

    CAS  PubMed  Google Scholar 

  172. Mallen CD, Peat G, Thomas E, Croft PR. Is chronic pain in adulthood related to childhood factors? A population-based case-control study of young adults. J Rheumatol. 2006;33(11):2286–90.

    PubMed  Google Scholar 

  173. Hohmeister J, Demirakca S, Zohsel K, Flor H, Hermann C. Responses to pain in school-aged children with experience in a neonatal intensive care unit: cognitive aspects and maternal influences. Eur J Pain. 2009;13(1):94–101.

    PubMed  Google Scholar 

  174. Tran L, Chaloner A, Sawalha AH, Greenwood V-MB. Importance of epigenetic mechanisms in visceral pain induced by chronic water avoidance stress. Psychoneuroendocrinology. 2013;38(6):898–906.

    CAS  PubMed  Google Scholar 

  175. Mahurkar-Joshi S, Chang L. Epigenetic mechanisms in irritable bowel syndrome. Front Psych. 2020;11:805.

    Google Scholar 

Download references

Acknowledgments

I would like to acknowledge the work of Dr. Christophe Faure, who wrote the prior version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miranda, A. (2022). Visceral Sensitivity. In: Faure, C., Thapar, N., Di Lorenzo, C. (eds) Pediatric Neurogastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-031-15229-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15229-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15228-3

  • Online ISBN: 978-3-031-15229-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics