Abstract
Quadrupedal locomotion skills are challenging to develop. In recent years, Deep Reinforcement Learning (DRL) promises to automate the development of locomotion controllers and map sensory observations to low-level actions. However, legged locomotion still is a challenging task for DRL algorithms, especially when energy efficiency is taken into consideration. In this paper, we propose a DRL scheme for efficient trotting applied on Laelaps II quadruped in MuJoCo. First, an accurate model of the robot is created by revealing the necessary parameters to be imported in the simulation, while special focus is given to the quadruped’s drivetrain. Concerning, the reward function and the action space, we investigate the best way to integrate in the reward, the terms necessary to minimize the Cost of Transport (CoT) while maintaining a trotting locomotion pattern. Last, we present how our solution increased the energy efficiency for a simple task of trotting on level terrain similar to the treadmill-robot environment at the Control Systems Lab [1] of NTUA.
Keywords
- Legged robots
- Learning locomotion
- Energy efficiency
- Deep reinforcement learning
This is a preview of subscription content, access via your institution.
Buying options








References
https://nereus.mech.ntua.gr/legged/laelaps-2-2/. Accessed 15 Apr 2022
Peng, X.B., Coumans, E., Zhang, T., Lee, T.-W.E., Tan, J., Levine, S.: Learning agile robotic locomotion skills by imitating animals. Robot. Sci. Syst., July 2020
Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S.: Learning to walk via deep reinforcement learning. Robot. Sci. Syst. (2019)
Xie, Z., Clary, P., Dao, J., Morais, P., Hurst, J., van de Panne, M.: Iterative reinforcement learning based design of dynamic locomotion skills for cassie. arXiv, preprint arXiv:1903.09537 (2019)
Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5(47), eabc5986 (2020)
Mastrogeorgiou, A., ElBahrawy, Y., Kecskeméthy, A., Papadopoulos, E.: Slope handling for quadruped robots using deep reinforcement learning and trajectory planning. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2020), Las Vegas, NV, USA, 25–29 October 2020 (2020)
Iscen, A., Yu, G., Escontrela, A., Jain, D., Tan, J., Caluwaerts, K.: Learning agile locomotion skills with a mentor. In: 2021 International Conference on Robotics and Automation (ICRA) (2021)
Tan, J., et al.: Sim-to-real: learning agile locomotion for quadruped robots (2018). arXiv, doi: https://doi.org/10.48550/arxiv.1804.10332
Koutsoukis, K., Papadopoulos, E.: On the effect of robotic leg design on energy efficiency. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2021), Xi’an, China, 30 May–5 June 2021 (2021)
Iscen, A., et al.: Policies modulating trajectory generators (2019). arXiv, doi: https://doi.org/10.48550/arxiv.1910.02812
Machairas, K., Papadopoulos, E.: An active compliance controller for quadruped trotting. In: 24th Mediterranean Conference on Control and Automation (MED 2016), Athens, Greece, 21–24 June 2016 (2016)
Papatheodorou, A.: Design & implementation of a real-time distributed EtherCAT-based motion control system for a multi-DoF quadruped robot. Diploma thesis, CSL, NTUA, Athens (2021). https://dspace.lib.ntua.gr/xmlui/handle/123456789/53738
Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2012, pp. 5026–5033 (2012). https://doi.org/10.1109/IROS.2012.6386109
Collins, J., Chand, S., Vanderkop, A., Howard, D.: A review of physics simulators for robotic applications. IEEE Access 9, 51416–51431 (2021). https://doi.org/10.1109/ACCESS.2021.3068769
Virgala, I., Kelemen, M.: Experimental friction identification of a DC motor. Int. J. Mech. Appl. 3(1), 26–30 (2013)
Machairas, K., Papadopoulos, E.: An analytical study on trotting at constant velocity and height. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 2018, pp. 3279–3284 (2018)
Brockman, G., et al.: OpenAI Gym (2016)
Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-Baselines3: reliable reinforcement learning implementations. J. Mach. Learn. Res. 22, 1–8 (2021). https://jmlr.org/papers/v22/20-1364.html
Mastrogeorgiou, A., ElBahrawy, Y., Machairas, K., Kecskeméthy, A., Papadopoulos, E.: Evaluating deep reinforcement learning algorithms for quadrupedal slope handling. In: 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR 2020), Moscow, Russian Federation, 24–26 August 2020 (2020)
Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning (2018)
Horwitz, A.: A version of Simpson’s rule for multiple integrals. J. Comput. Appl. Math. 134, 1–11 (2001)
Gangapurwala, S., Geisert, M., Orsolino, R., Fallon, M., Havoutis, I.: RLOC: terrain-aware legged locomotion using reinforcement learning and optimal control (2020). arXiv, doi: https://doi.org/10.48550/arxiv.2012.03094
https://ocw.mit.edu/courses/2-161-signal-processing-continuous-and-discrete-fall-2008
https://bitbucket.org/csl_legged/laelaps_rl_mujoco/. Accessed 15 Apr 2022
Acknowledgements
The authors wish to thank K. Machairas for co-developing the quadruped robot Laelaps II. This work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 2182).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mastrogeorgiou, A., Papatheodorou, A., Koutsoukis, K., Papadopoulos, E. (2023). Learning Energy-Efficient Trotting for Legged Robots. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-15226-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15225-2
Online ISBN: 978-3-031-15226-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)