Skip to main content

Design and Mixed-Reality Teleoperation of a Quadruped-Manipulator Robot for SAR Tasks

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Abstract

Technological development within the robotics field has made it possible to generate great advances, developing complex bio-inspired systems, such as robots with legs. The same ones have great applicability within search and rescue (SAR) tasks. This type of robot stands out for its extraordinary ability to move within unstructured environments, overcome obstacles and adapt to different terrains. However, quadruped robots have gained space in the SAR-Tasks field over the last few years. Most implementations are limited to collecting information using different sensors, such as cameras, lasers, or microphones. This article seeks to simulate, implement and carry out the teleoperation through Mixed-Reality (M-R) of a quadruped robot equipped with a manipulator with six degrees of freedom, for which the ARTU-R robot (A1 Rescue Tasks Unitree Robot) has been used. One of the main contributions of this work focuses on improving the efficiency in executing tasks of handling and transporting medical equipment in post-disaster situations, using Mixed Reality with the ARTU-R robot and a robotic manipulator. To develop this proof of concept, Matlab has been used as a computational tool for optimizing the workspace of the integrated robot. Simulations have been carried out on Gazebo in reconstructed post-disaster environments to validate the robot’s functionality. At the same time, the effectiveness of the M-R system has been verified with field tests executing medical assistance tasks with the robot. The main results show a 21% increase in the efficiency of performing complex handling tasks using the proposed M-R system compared to conventional interfaces and the efficiency of using quadruped robots with manipulators for medical assistance tasks.

This work has received funding from the RoboCity2030-DIH-CM Madrid Robotics Digital Innovation Hub “Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, fase IV”; S2018/NMT-4331), funded by “Programas de Actividades I+D en la Comunidad de Madrid” and cofunded by Structural Funds of the EU. and TASAR (Team of Advanced Search And Rescue Robots), funded by “Proyectos de I+D+i del Ministerio de Ciencia, Innovacion y Universidades”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chai, H., et al.: A survey of the development of quadruped robots: joint configuration, dynamic locomotion control method and mobile manipulation approach. Biomim. Intell. Robot. 2(1), 100029 (2022)

    Article  Google Scholar 

  2. Ma, Y., Farshidian, F., Miki, T., Lee, J., Hutter, M.: Combining learning-based locomotion policy with model-based manipulation for legged mobile manipulators. IEEE Robot. Autom. Lett. 7(2), 2377–2384 (2022)

    Article  Google Scholar 

  3. Ubellacker, W., Csomay-Shanklin, N., Molnar, T.G., Ames, A.D.: Verifying safe transitions between dynamic motion primitives on legged robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8477–8484 (2021)

    Google Scholar 

  4. Ulloa, C.C., Sánchez, G.P., Barrientos, A., Del Cerro, J.: Autonomous thermal vision robotic system for victims recognition in search and rescue missions. Sensors 21(21), 7346 (2021)

    Article  Google Scholar 

  5. Cardona, G.A., Ramirez-Rugeles, J., Mojica-Nava, E., Calderon, J.M.: Visual victim detection and quadrotor-swarm coordination control in search and rescue environment. Int. J. Electr. Comput. Eng. (2088-8708) 11(3), 2079 (2021)

    Google Scholar 

  6. Hoshino, W., Seo, J., Yamazaki, Y.: A study for detecting disaster victims using multi-copter drone with a thermographic camera and image object recognition by SSD. In: 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 162–167. IEEE (2021)

    Google Scholar 

  7. Subbayamma, B.V., Sushma, T.: Human detection robot in rescue operations. Int. Res. J. Innov. Eng. Technol. 5(6), 122 (2021)

    Google Scholar 

  8. Tammana, A., Amogh, M.P., Gagan, B., Anuradha, M., Vanamala, H.R.: Thermal image processing and analysis for surveillance UAVs. In: Kaiser, M.S., Xie, J., Rathore, V.S. (eds.) Information and Communication Technology for Competitive Strategies (ICTCS 2020). LNNS, vol. 190, pp. 577–585. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0882-7_50

    Chapter  Google Scholar 

  9. Ilikci, B., Chen, L., Cho, H., Liu, Q.: Heat-map based emotion and face recognition from thermal images. In: 2019 Computing, Communications and IoT Applications (ComComAp), pp. 449–453. IEEE (2019)

    Google Scholar 

  10. Park, J., Chen, J., Cho, Y.K., Kang, D.Y., Son, B.J.: CNN-based person detection using infrared images for night-time intrusion warning systems. Sensors 20(1), 34 (2019)

    Article  Google Scholar 

  11. Ismail, R., Muthukumaraswamy, S.: Military reconnaissance and rescue robot with real-time object detection. In: Reddy, A.N.R., Marla, D., Favorskaya, M.N., Satapathy, S.C. (eds.) Intelligent Manufacturing and Energy Sustainability. SIST, vol. 213, pp. 637–648. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4443-3_61

    Chapter  Google Scholar 

  12. You, Y., et al.: State estimation for hybrid wheeled-legged robots performing mobile manipulation tasks. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3019–3025 (2021)

    Google Scholar 

  13. IIT: Robot teleoperative in collaboration with INAIL (2021)

    Google Scholar 

  14. Vyacheslav Lyashenko, M., Ahmad, A., Belova, N., Sotnik, S.: Modern walking robots: a brief overview. Int. J. Recent Technol. Appl. Sci. 3(2), 32–39 (2021)

    Article  Google Scholar 

  15. Chai, H., et al.: A survey of the development of quadruped robots: joint configuration, dynamic locomotion control method and mobile manipulation approach. Biomim. Intell. Robot. 2(1), 100029 (2022)

    Article  Google Scholar 

  16. Sun, W., Tian, X., Song, Y., Pang, B., Yuan, X., Qingyang, X.: Balance control of a quadruped robot based on foot fall adjustment. Appl. Sci. 12(5), 2521 (2022)

    Article  Google Scholar 

  17. Bellicoso, D., Jenelten, F., Gehring, C., Hutter, M.: Dynamic locomotion through online nonlinear motion optimization for quadrupedal robots. IEEE Robot. Autom. Lett. 3, 2261–2268 (2018)

    Article  Google Scholar 

  18. Hussain, K., Omar, Z., Wang, X., Adewale, O.O., Elnour, M.: Analysis and research of quadruped robot’s actuators: a review. Int. J. Mech. Eng. Robot. Res. 10(8), 436–442 (2021)

    Article  Google Scholar 

  19. Zhu, J., et al.: Challenges and outlook in robotic manipulation of deformable objects. arXiv preprint arXiv:2105.01767 (2021)

  20. Peers, C., Motawei, M., Richardson, R., Zhou, C.: Development of a teleoperative quadrupedal manipulator. In: UK-RAS21 Conference: “Robotics at Home” Proceedings, Leeds (2021)

    Google Scholar 

  21. Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. 7(62), eabk2822 (2022)

    Article  Google Scholar 

  22. Liao, T., Ye, S., Chen, L., Sun, C., Zhang, A.: Energy efficient swing leg trajectory planning for quadruped robots walking on rough terrain. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2128–2133. IEEE (2019)

    Google Scholar 

  23. Kaufmann, M., et al.: Copilot mike: an autonomous assistant for multi-robot operations in cave exploration. In: 2021 IEEE Aerospace Conference (50100), pp. 1–9. IEEE (2021)

    Google Scholar 

  24. Ferrolho, H., Ivan, V., Merkt, W., Havoutis, I., Vijayakumar, S.: RoLoMa: robust loco-manipulation for quadruped robots with arms. arXiv preprint arXiv:2203.01446 (2022)

  25. Dario Bellicoso, C., et al.: Alma - articulated locomotion and manipulation for a torque-controllable robot. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8477–8483 (2019)

    Google Scholar 

  26. Ewen, P., Sleiman, J.-P., Chen, Y., Lu, W.-C., Hutter, M., Vasudevan, R.: Generating continuous motion and force plans in real-time for legged mobile manipulation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 4933–4939. IEEE (2021)

    Google Scholar 

  27. Zhao, X., You, Y., Laurenzi, A., Kashiri, N., Tsagarakis, N.: Locomotion adaptation in heavy payload transportation tasks with the quadruped robot centauro. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 5028–5034 (2021)

    Google Scholar 

  28. Semini, C., et al.: Design overview of the hydraulic quadruped robots. In: The Fourteenth Scandinavian International Conference on Fluid Power, pp. 20–22 (2015)

    Google Scholar 

  29. Mitrano, P., McConachie, D., Berenson, D.: Learning where to trust unreliable models in an unstructured world for deformable object manipulation. Sci. Robot. 6(54), eabd8170 (2021)

    Article  Google Scholar 

  30. Risiglione, M., Sleiman, J.-P., Minniti, M.V., Cizmeci, B., Dresscher, D., Hutter, M.: Passivity-based control for haptic teleoperation of a legged manipulator in presence of time-delays. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5276–5281. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christyan Cruz Ulloa .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Video of Teleoperation tests through the Mixed-Reality Execution system for the implemented robot https://www.youtube.com/watch?v=_uN22XUTWjo.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ulloa, C.C., Domínguez, D., Barrientos, A., del Cerro, J. (2023). Design and Mixed-Reality Teleoperation of a Quadruped-Manipulator Robot for SAR Tasks. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_19

Download citation

Publish with us

Policies and ethics