Skip to main content

A Survey of Wheeled-Legged Robots

  • Conference paper
  • First Online:
Robotics in Natural Settings (CLAWAR 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 530))

Included in the following conference series:

Abstract

The community in legged robotics focuses on bio-inspired robots, although there are some human inventions that nature could not recreate. One of the most significant examples is the wheel which has made our transportation system more efficient and faster. Inspired by this human-made evolution, we present a survey of wheeled-legged robots, allowing robotic systems to be efficient on flat as well as versatile on challenging terrain. This enhancement, however, comes at the cost of increased complexity due to additional degrees of freedom at the end-effector, which empowers motions along the rolling direction. The missing examples in nature make designing templates that capture the underlying locomotion principles cumbersome, making hybrid locomotion challenging. This paper reviews some of the novel locomotion frameworks overcoming these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, A.A.: Automatic control systems for legged locomotion machines. Technical report. University of Southern California Los Angeles Electronic Sciences Lab (1968)

    Google Scholar 

  2. McGhee, R.B.: Finite state control of quadruped locomotion. Simulation 9(3), 135–140 (1967)

    Article  Google Scholar 

  3. Hutter, M., et al.: Towards a generic solution for inspection of industrial sites. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 575–589. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_37

    Chapter  Google Scholar 

  4. Bellicoso, C.D., et al.: Advances in real-world applications for legged robots. J. Field Robot. 35(8), 1311–1326 (2018)

    Article  Google Scholar 

  5. Gehring, C., et al.: ANYmal in the field: solving industrial inspection of an offshore HVDC platform with a quadrupedal robot. In: Ishigami, G., Yoshida, K. (eds.) Field and Service Robotics. SPAR, vol. 16, pp. 247–260. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9460-1_18

    Chapter  Google Scholar 

  6. Tranzatto, M., et al.: Cerberus: autonomous legged and aerial robotic exploration in the tunnel and urban circuits of the DARPA subterranean challenge. Field Robot. (2021)

    Google Scholar 

  7. Bouman, A., et al.: Autonomous spot: long-range autonomous exploration of extreme environments with legged locomotion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2518–2525 (2020)

    Google Scholar 

  8. BBC News: Coronavirus: robot dog enforces social distancing in Singapore park. https://www.bbc.com/news/av/technology-52619568

  9. Hutter, M., et al.: ANYmal-toward legged robots for harsh environments. Adv. Robot. 31(17), 918–931 (2017)

    Article  Google Scholar 

  10. Boston Dynamics: Spot. https://www.bostondynamics.com/spot

  11. Unitree Robotics: Aliengo. https://www.unitree.com/products/aliengo

  12. DeepRobotics: DeepRobotics quadrupedal robots. http://www.deeprobotics.cn/

  13. Ghost Robotics: Vision60 Q-UGV. https://www.ghostrobotics.io/

  14. Bledt, G., Powell, M.J., Katz, B., Di Carlo, J., Wensing, P.M., Kim, S.: MIT Cheetah 3: design and control of a robust, dynamic quadruped robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2245–2252 (2018)

    Google Scholar 

  15. Semini, C., et al.: Brief introduction to the quadruped robot HyQReal. In: Italian Conference on Robotics and Intelligent Machines (I-RIM), pp. 1–2 (2019)

    Google Scholar 

  16. Boston Dynamics: More parkour atlas (2019). https://youtu.be/_sBBaNYex3E

  17. Kaneko, K.: Humanoid robot HRP-5P: an electrically actuated humanoid robot with high-power and wide-range joints. IEEE Robot. Autom. Lett. 4(2), 1431–1438 (2019)

    Article  Google Scholar 

  18. Agility Robotics: Digit - advanced mobility for the human world. https://www.agilityrobotics.com/robots#digit

  19. Stasse, O., et al.: TALOS: a new humanoid research platform targeted for industrial applications. In: IEEE-RAS International Conference on Humanoid Robotics (Humanoids), pp. 689–695 (2017)

    Google Scholar 

  20. Marko Bjelonic: Swiss-mile. https://www.swiss-mile.com/

  21. Bjelonic, M., Grandia, R., Harley, O., Galliard, C., Zimmermann, S., Hutter, M.: Whole-body MPC and online gait sequence generation for wheeled-legged robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2021)

    Google Scholar 

  22. Bjelonic, M., et al.: Offline motion libraries and online MPC for advanced mobility skills. Int. J. Robot. Res. (2022, under review)

    Google Scholar 

  23. Bjelonic, M., et al.: Keep Rollin’ - whole-body motion control and planning for wheeled quadrupedal robots. IEEE Robot. Autom. Lett. 4(2), 2116–2123 (2019)

    Article  Google Scholar 

  24. Vollenweider, E., Bjelonic, M., Klemm, V., Rudin, N., Lee, J., Hutter, M.: Advanced skills through multiple adversarial motion priors in reinforcement learning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2022, under review)

    Google Scholar 

  25. Bulliet, R.W.: The Wheel: Inventions and Reinventions. Columbia University Press, New York (2016)

    Book  Google Scholar 

  26. LaBarbera, M.: Why the wheels won’t go. Am. Nat. 121(3), 395–408 (1983)

    Article  Google Scholar 

  27. Ackerman, E.: Wheels are better than feet for legged robots: ANYmal demonstrates how hybrid mobility can benefit quadrupedal robots. https://spectrum.ieee.org/automaton/robotics/robotics-hardware/wheels-are-better-than-feet-for-legged-robots

  28. Boston Dynamics: Introducing handle. https://youtu.be/-7xvqQeoA8c

  29. Geilinger, M., Poranne, R., Desai, R., Thomaszewski, B., Coros, S.: Skaterbots: optimization-based design and motion synthesis for robotic creatures with legs and wheels. ACM Trans. Graph. (TOG) 37(4), 160 (2018)

    Article  Google Scholar 

  30. Klemm, V., et al.: Ascento: a two-wheeled jumping robot. In: ICRA International Conference on Robotics and Automation (ICRA), pp. 7515–7521 (2019)

    Google Scholar 

  31. Reid, W., Emanuel, B., Chamberlain-Simon, B., Karumanchi, S., Meirion-Griffith, G.: Mobility mode evaluation of a wheel-on-limb rover on glacial ice analogous to Europa terrain. In: IEEE Aerospace Conference, pp. 1–9 (2020)

    Google Scholar 

  32. Endo, G., Hirose, S.: Study on roller-walker-adaptation of characteristics of the propulsion by a leg trajectory. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2008)

    Google Scholar 

  33. Klamt, T., et al.: Remote mobile manipulation with the centauro robot: full-body telepresence and autonomous operator assistance. J. Field Robot. 37(5), 889–919 (2020)

    Article  Google Scholar 

  34. Boston Dynamics: Handle. https://www.bostondynamics.com/handle

  35. Klemm, V., et al.: LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops. IEEE Robot. Autom. Lett. 5(2), 3745–3752 (2020)

    Article  Google Scholar 

  36. Klamt, T., Behnke, S.: Anytime hybrid driving-stepping locomotion planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4444–4451 (2017)

    Google Scholar 

  37. Lim, J., et al.: Robot system of DRC-HUBO+ and control strategy of team KAIST in DARPA robotics challenge finals. J. Field Robot. 34(4), 802–829 (2017)

    Article  Google Scholar 

  38. Dietrich, A., et al.: Whole-body impedance control of wheeled mobile manipulators. Auton. Robot. 40(3), 505–517 (2015). https://doi.org/10.1007/s10514-015-9438-z

    Article  Google Scholar 

  39. Reid, W., Pérez-Grau, F.J., Göktoğan, A.H., Sukkarieh, S.: Actively articulated suspension for a wheel-on-leg rover operating on a Martian analog surface. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5596–5602 (2016)

    Google Scholar 

  40. Cordes, F., et al.: An active suspension system for a planetary rover. In: Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), pp. 17–19 (2014)

    Google Scholar 

  41. Bellegarda, G., van Teeffelen, K., Byl, K.: Design and evaluation of skating motions for a dexterous quadruped. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1703–1709 (2018)

    Google Scholar 

  42. Grand, C., Benamar, F., Plumet, F.: Motion kinematics analysis of wheeled-legged rover over 3D surface with posture adaptation. Mech. Mach. Theory 45(3), 477–495 (2010)

    Article  Google Scholar 

  43. Klamt, T., et al.: Supervised autonomous locomotion and manipulation for disaster response with a centaur-like robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1–8 (2018)

    Google Scholar 

  44. Laurenzi, A., Hoffman, E.M., Tsagarakis, N.G.: Quadrupedal walking motion and footstep placement through linear model predictive control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2267–2273 (2018)

    Google Scholar 

  45. Kamedula, M., Kashiri, N., Tsagarakis, N.G.: On the kinematics of wheeled motion control of a hybrid wheeled-legged centauro robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2426–2433 (2018)

    Google Scholar 

  46. Klamt, T., et al.: Flexible disaster response of tomorrow: final presentation and evaluation of the CENTAURO system. IEEE Robot. Autom. Mag. 26(4), 59–72 (2019)

    Article  Google Scholar 

  47. Giordano, P.R., Fuchs, M., Albu-Schaffer, A., Hirzinger, G.: On the kinematic modeling and control of a mobile platform equipped with steering wheels and movable legs. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4080–4087 (2009)

    Google Scholar 

  48. Pinto, V.H., Soares, I.N., Rocha, M., Lima, J., Gonçalves, J., Costa, P.: Design, modeling, and control of an autonomous legged-wheeled hybrid robotic vehicle with non-rigid joints. Appl. Sci. 11(13), 6116 (2021)

    Article  Google Scholar 

  49. Squyres, S.W., et al.: Exploration of Victoria crater by the mars rover opportunity. Science 324(5930), 1058–1061 (2009)

    Article  Google Scholar 

  50. Cordes, F., Kirchner, F., Babu, A.: Design and field testing of a rover with an actively articulated suspension system in a mars analog terrain. J. Field Robot. 35(7), 1149–1181 (2018)

    Article  Google Scholar 

  51. Reid, W., Göktogan, A.H., Sukkarieh, S.: Moving mammoth: stable motion for a reconfigurable wheel-on-leg rover. In: Proceedings of Australasian Conference on Robotics and Automation, pp. 1–10 (2014)

    Google Scholar 

  52. Hutter, M., et al.: Towards optimal force distribution for walking excavators. In: IEEE International Conference on Advanced Robotics (ICAR), pp. 295–301 (2015)

    Google Scholar 

  53. Jud, D., Hottiger, G., Leemann, P., Hutter, M.: Planning and control for autonomous excavation. IEEE Robot. Autom. Lett. 2(4), 2151–2158 (2017)

    Article  Google Scholar 

  54. Hirose, S., Takeuchi, H.: Study on roller-walk (basic characteristics and its control). In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3265–3270 (1996)

    Google Scholar 

  55. Endo, G., Hirose, S.: Study on roller-walker-improvement of locomotive efficiency of quadruped robots by passive wheels. Adv. Robot. 26, 969–988 (2012)

    Article  Google Scholar 

  56. Xu, Z., Lü, T., Tian, H., Xu, Z., Song, L.: Dynamic analysis of the biped ice-skater robot of passive wheel type. J. Shanghai Jiaotong Univ. (Sci.) 3, 122–128 (2008). https://doi.org/10.1007/s12204-008-0122-8

    Article  Google Scholar 

  57. Ziv, N., Lee, Y., Ciaravella, G.: Inline skating motion generator with passive wheels for small size humanoid robots. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (2010)

    Google Scholar 

  58. Matsumoto, O., Kajita, S., Komoriya, K.: Flexible locomotion control of a self-contained biped leg-wheeled system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2002)

    Google Scholar 

  59. Iverach-Brereton, C., Baltes, J., Anderson, J., Winton, A., Carrier, D.: Gait design for an ice skating humanoid robot. Robot. Auton. Syst. 62(3), 306–318 (2014)

    Article  Google Scholar 

  60. Takasugi, N., Kojima, K., Nozawa, S., Kakiuchi, Y., Okada, K., Inaba, M.: Real-time skating motion control of humanoid robots for acceleration and balancing. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2016)

    Google Scholar 

  61. Geilinger, M., Winberg, S., Coros, S.: A computational framework for designing skilled legged-wheeled robots. IEEE Robot. Autom. Lett. 5(2), 3674–3681 (2020)

    Article  Google Scholar 

  62. Sentis, L., Petersen, J., Philippsen, R.: Implementation and stability analysis of prioritized whole-body compliant controllers on a wheeled humanoid robot in uneven terrains. Auton. Robot. 35(4), 301–319 (2013). https://doi.org/10.1007/s10514-013-9358-8

    Article  Google Scholar 

  63. Jeong, S., Takahashi, T.: Wheeled inverted pendulum type assistant robot: design concept and mobile control. Intel. Serv. Robot. 1(4), 313–320 (2008). https://doi.org/10.1007/s11370-008-0024-5

    Article  Google Scholar 

  64. Medeiros, V.S., Jelavic, E., Bjelonic, M., Siegwart, R., Meggiolaro, M.A., Hutter, M.: Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain. IEEE Robot. Autom. Lett. 5(3), 4172–4179 (2020)

    Article  Google Scholar 

  65. Jelavic, E., Hutter, M.: Whole-body motion planning for walking excavators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2292–2299 (2019)

    Google Scholar 

  66. Bjelonic, M., Sankar, P.K., Bellicoso, C.D., Vallery, H., Hutter, M.: Rolling in the deep - hybrid locomotion for wheeled-legged robots using online trajectory optimization. IEEE Robot. Autom. Lett. 5(2), 3626–3633 (2020)

    Article  Google Scholar 

  67. Raibert, M.H.: Legged Robots that Balance. MIT Press, Cambridge (1986)

    Book  Google Scholar 

  68. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: a step toward humanoid push recovery. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 200–207 (2006)

    Google Scholar 

  69. Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot. 7(62) (2022)

    Google Scholar 

  70. Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot. 5(47), eabc5986 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Bjelonic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bjelonic, M., Klemm, V., Lee, J., Hutter, M. (2023). A Survey of Wheeled-Legged Robots. In: Cascalho, J.M., Tokhi, M.O., Silva, M.F., Mendes, A., Goher, K., Funk, M. (eds) Robotics in Natural Settings. CLAWAR 2022. Lecture Notes in Networks and Systems, vol 530. Springer, Cham. https://doi.org/10.1007/978-3-031-15226-9_11

Download citation

Publish with us

Policies and ethics