Skip to main content

Combination of GPU Programming and FEM Analysis in Structural Optimisation

  • Conference paper
  • First Online:
Vehicle and Automotive Engineering 4 (VAE 2022)

Abstract

GPUs no longer only support graphical applications and gaming. These are becoming cheap and powerful tools for scientific and general-purpose computations. They provide a massively parallel environment with the support of a single instruction multiple data (SIMD) programming model. Making finite element calculations is also a time-consuming process in some cases due to many elements or a large degree of freedom. The FEM simulation is essential to check the analytical or measured mechanical stresses, deformations, etc. In making structural optimisation, one needs several iterations and combining the optimisation with FEM, increasing the calculation time. GPU programming is a good solution for this. In the article, we show the applicability of the combination of GPU, optimisation, and FEM simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xia, Z., Wang, Y., Wang, Q., Mei, C.: GPU parallel strategy for parameterized LSM-based topology optimization using isogeometric analysis. Struct. Multidiscip. Optim. 56(2), 413–434 (2017). https://doi.org/10.1007/s00158-017-1672-x

    Article  MathSciNet  Google Scholar 

  2. Wang, J., Zhang, D., Luo, M., Zhang, Y.: A GPU-based tool parameters optimization and tool orientation control method for four-axis milling with ball-end cutter. Int. J. Adv. Manuf. Technol. 102(5–8), 1107–1125 (2018). https://doi.org/10.1007/s00170-018-2954-1

    Article  Google Scholar 

  3. Yang, X.S.: Flower pollination algorithm for global optimisation. In: Durand-Lose, J., Nataša, J. (eds.) Unconventional Computation and Natural Computation, pp. 240–249. Springer, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Xie, X.F., Zhang, W.J., Yang, Z.L.: Adaptive particle swarm optimisation on individual level. In: Proceedings of the 6th International Conference on Signal Processing, 2002, vol. 2, pp. 1215–1218 (2002). https://doi.org/10.1109/ICOSP.2002.1180009

  5. Yang, X.S.: Nature-Inspired Optimization Algorithms, 2nd (edn). Academic Press, London (2021). https://doi.org/10.1016/C2019-0-03762-4

    Book  Google Scholar 

  6. Lee, D.S., Gonzalez, L.F., Srinivas, K., Periaux, J.: Robust evolutionary algorithms for UAV/UCAV aerodynamic and RCS design optimisation. Comput. Fluids 37(5), 547–564 (2008). https://doi.org/10.1016/j.compfluid.2007.07.008

    Article  MATH  Google Scholar 

  7. Tey, J.Y., Rahizar, R.: Handling performance optimisation for formula vehicle using multi-objectives evolutionary algorithms. Veh. Syst. Dyn. 58(12), 1823–1838 (2020). https://doi.org/10.1080/00423114.2019.1645861

    Article  Google Scholar 

  8. Galván-López, E., Curran, T., McDermott, J., Carroll, P.: Design of an autonomous intelligent demand-side management system using stochastic optimisation evolutionary algorithms. Neurocomputing 170, 270–285 (2015). https://doi.org/10.1016/j.neucom.2015.03.093

    Article  Google Scholar 

  9. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimisation over continuous spaces. J. Global Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  10. Qin, A.K., Suganthan, P.N.: Self-adaptive differential evolution algorithm for numerical optimisation. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1785–1791 (2005). https://doi.org/10.1109/CEC.2005.1554904

  11. Wardenier, J., Kurobane, Y., Packer, J.A., van der Vegte, G.J., Zhao, X.-L.: Design Guide for Circular Hollow Section (CHS) Joints Under Predominantly Static Loading, 2nd edn. CIDECT, Zürich (2008)

    Google Scholar 

  12. Wardenier, J., Kurobane, Y., Packer, J.A., van der Vegte, G.J., Zhao, X.-L.: Design guide for rectangular hollow section (RHS) joints under predominantly static loading, 2nd edn. CIDECT, Zürich (2008)

    Google Scholar 

  13. Ferreira, A.J.M., Fantuzzi, N.: MATLAB Codes for Finite Element Analysis. Springer Cham, Heidelberg (2020). https://doi.org/10.1007/978-3-030-47952-7

    Book  MATH  Google Scholar 

  14. Smith, I.M., Lee, M.: Programming the Finite Element Method, 5th edn. John Wiley and Sons Ltd, London (2013)

    Google Scholar 

  15. Páczelt, I.: Finite element method in engineering practice (in Hungarian). Miskolci Egyetemi Kiadó, Miskolc (1999)

    Google Scholar 

  16. Páczelt, I., Baksa, A., Szabó, T.: Fundamentals of the finite element method (in Hungarian). HEFOP jegyzet, Miskolc (2007)

    Google Scholar 

  17. EN 1993–1–1: Eurocode 3: Design of steel structures - part 1–1 General rules and rules for buildings. European Committee Standardization, Brussels (2009)

    Google Scholar 

  18. CUDA Drive API documentation. https://docs.nvidia.com/cuda/cuda-driver-api/index.html. Accessed 01 Mar 2022

  19. CUDA Runtime API documentation. https://docs.nvidia.com/cuda/cuda-runtime-api/index.html. Accessed 01 Mar 2022

  20. Cheng, J.: Professional CUDA C Programming. John Wiley & Sons, Hoboken (2014)

    Google Scholar 

  21. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose GPU Programming. Pearson Education, Boston (2010)

    Google Scholar 

  22. Help center for MATLAB: Simulink and other MathWorks product. https://uk.mathworks.com/help/index.html?s_tid=CRUX_lftnav. Accessed 01 Mar 2022

Download references

Acknowledgements

The research was supported by the Hungarian National Research, Development and Innovation Office—NKFIH under the project number K 134358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilárd Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagy, S., Jármai, K., Baksa, A. (2023). Combination of GPU Programming and FEM Analysis in Structural Optimisation. In: Jármai, K., Cservenák, Á. (eds) Vehicle and Automotive Engineering 4. VAE 2022. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-15211-5_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15211-5_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15210-8

  • Online ISBN: 978-3-031-15211-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics