Skip to main content

Lasers: Ablative

  • Chapter
  • First Online:
European Handbook of Dermatological Treatments

Abstract

Ablative lasers are, without any doubt, the mainstay of laser technology in dermatologic surgery today. A relatively simple, touch-free, highly modulable tissue photothermal vaporization can be generated, either in full-beam or fractional mode with conventional surgical infrared lasers (CS-IRL). This effect is based on the well-known physical process where light energy is absorbed by tissue chromophores resulting in heat formation leading to local temperature increases. Intraoperative immediate results are clearly visible, and final clinical improvements—after wound healing—are quite predictable. Recently, another type of tissue ablation has been introduced focusing on nonthermal photomechanical effects produced by Q-switched infrared lasers (QS-IRL). Modern laser systems can consistently rely on effective and efficient technical solutions able to facilitate operators in the performance of otherwise complicated surgical procedures, thanks to a better spatial control on degree and extent of tissue injury. Today, ablative lasers can be effectively used to rejuvenate skin and mucous tissues through careful modulation of cellular destruction and tissue regeneration, improve scars through precise severing of thick collagen bundles leading to their subsequent qualitative and quantitative regenerative rearrangement, increase transcutaneous penetration of topical actives, precisely eliminate epithelial growth, and finely “sculpt” dermal irregularities. Ablative lasers can be effectively combined with other technologies like radio frequency and different non-ablative light sources besides being integrated with more complex combined treatments as advanced photo-dynamic treatment (PDT) and regenerative platelet-rich plasma (PRP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFR:

Ablative fractional resurfacing

CS-IRL:

Conventional surgical infrared lasers

HSP:

Heat shock protein

IR:

Infrared

MMP:

Matrix metalloproteinase

PIH:

Postinflammatory hyperpigmentation

PRL:

Platelet-rich plasma

QS-IRL:

Q-switched infrared lasers

RTD:

Residual thermal damage

TRT:

Thermal relaxation time

References

  • Hobbs ER, Bailin PL, Wheeland RG, Ratz JL. Superpulsed lasers: minimizing thermal damage with short duration, high irradiance pulses. J Dermatol Surg Oncol. 1987;13:955–64.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahimi OA, Syed Z, Sakamoto FH, Avram MM, Anderson RR. Treating tattoo allergy with ablative fractional resurfacing: a novel paradigm for tattoo removal. J Am Acad Dermatol. 2011;64:1111–4.

    Article  PubMed  Google Scholar 

  • Kim JE, Won HC, Bak H, Kositratna G, Manstein D, Dotto GP, Chang SE. Gene profiling analysis of the early effects of ablative fractional carbon dioxide laser treatment on human skin. Dermatol Surg. 2013;39:1033–43.

    Article  CAS  PubMed  Google Scholar 

  • Marini L, Crisman G. Advanced thermo-fractional PDT for non-melanoma skin cancer. Lasers Surg Med. 2013;45(S25):59.

    Google Scholar 

Further Reading

  • Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    Article  CAS  PubMed  Google Scholar 

  • Armenakas-Alexiades MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: non ablative fractional and ablative laser resurfacing. J Am Acad Dermatol. 2008;58(5):719–37.

    Article  Google Scholar 

  • Boulnois JL. Photphysical processes in recent medical laser developments: a review. Laser Med Sci. 1988;1:47–64.

    Article  Google Scholar 

  • Campolmi P, Bonan P, Cannarozzo G, Bruscino N, Moretti S. Efficacy and effectiveness evaluation of an innovative CO2 laser radiofrequency device in dermatology. J Eur Acad Dermatol. 2012;23. https://doi.org/10.1111/jeadv.12029.

  • Goldman L, Wilson RG, Hornby P, Meyer RG. Radiation from a Q-switched ruby laser. Effect of repeated impacts of power output of 10 megawatts on a tattoo of man. J Invest Dermatol. 1965;44:69–71.

    Article  CAS  PubMed  Google Scholar 

  • Grunewald S, Bodendorf M, Illes M, Kendler M, Simon JC, Paasch U. In vivo wound healing and dermal matrix remodelling in response to fractional CO2 laser intervention: clinicopathological correlation in non-facial skin. Int J Hyperth. 2011;27(8):811–8.

    Article  Google Scholar 

  • Hædersdal M, Sakamoto FH, Farinelli WA, Doukas AG, Tam J, Anderson RR. Fractional CO2 laser-assisted drug delivery. Lasers Surg Med. 2010;42:113–22.

    Article  PubMed  Google Scholar 

  • Hantash BM, Bedi VP, Chan KF, Zachary CB. Ex-vivo histological characterization of a novel ablative fractional resurfacing device. Lasers Surg Med. 2007;39:87–95.

    Article  PubMed  Google Scholar 

  • Hsiao CY, Huang CS, Hu S, Ko YS, Sung HC, Chen CC, Huang SY. Fractional carbon dioxide laser treatment to enhance skin permeation of ascorbic acid 2-glucoside with minimal skin disruption. Dermatol Surg. 2012;38:1234–93.

    Article  Google Scholar 

  • Huzaira M, Anderson RR, Sink K, Mainstein D. Intradermal focusing of near-infrared optical pulses: a new approach for non ablative laser therapy. Lasers Surg Med. 2003;32(Suppl 15):17–38.

    Google Scholar 

  • Karsai S, Czarnecka A, Junger M, Raulin C. Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides. Lasers Surg Med. 2010;42:160–7.

    Article  PubMed  Google Scholar 

  • Kathri KA, Mahoney DL, McCartney MJ. Laser scar revision: a review. J Cosmet Laser Ther. 2011;13:54–62.

    Article  Google Scholar 

  • Kaufmann R, Hartmann A, Hibst R. Cutting and skin-ablative properties of pulsed mid infrared laser surgery. J Dermatol Surg Oncol. 1994;20:112–8.

    Article  CAS  PubMed  Google Scholar 

  • Lane RG, Linsker R, Wynne JJ, Torres A, Geronemus RG. Ultraviolet laser ablation of skin. Arch Dermatol. 1985;121(5):609–17.

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Kim BJ, Mun SK. The efficacy of autologous platelet rich plasma combined with ablative carbon dioxide fractional resurfacing for acne scars: a simultaneous spit face trial. Dermatol Surg. 2011;37:931–8.

    Article  CAS  PubMed  Google Scholar 

  • Manstein D, Herron GS, Sink R, Tanner H, Anderson RR. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34:426–38.

    Article  PubMed  Google Scholar 

  • Manuskiatti W, Iamphonrat T, Wanitphakdeedecha R, Eimounth S. Comparison of fractional erbium-doped yttrium aluminium garnet and carbon dioxide lasers in resurfacing of atrophic scars in Asians. Dermatol Surg. 2013;39:111–20.

    Article  CAS  PubMed  Google Scholar 

  • Marini L. SPF-RR sequential photothermal fractional resurfacing and remodelling with the variable pulse Er:YAG laser and scanner-assisted Nd:YAG laser. J Cosmet Laser Ther. 2009;11(4):202–11.

    Article  PubMed  Google Scholar 

  • Marini L. 1064 nm Q-switched photoacoustic laser ablation of xantelasma palpebrarum. Lasers Surg Med. 2012;44(S24):21.

    Google Scholar 

  • Marini L, Crisman G. Fractional priming + Q-switched sequential layering tattoo removal. Lasers Surg Med. 2013;45(S25):9.

    Google Scholar 

  • Murphy MJ, Torstesson PA. Thermal relaxation times: an outdated concept in photothermal treatments. Lasers Med Sci. 2014;29(3):973–8.

    Article  CAS  PubMed  Google Scholar 

  • Newman JB, Lord JF, Ash K, McDaniel DH. Variable pulse Er:YAG laser skin resurfacing of perioral rhytides and side-by-side comparison with carbon dioxide laser. Lasers Surg Med. 2000;26:208–14.

    Article  CAS  PubMed  Google Scholar 

  • Trelles MA, Mordon S, Velez M, Urdiales F, Levy JL. Results of ablative facial skin resurfacing with the erbium:yttrium aluminun garnet laser 1 week and 2 months after one single treatment in 30 patients. Lasers Med Sci. 2009;25:186–94.

    Article  Google Scholar 

  • Watanabe S, Flotte TJ, McAuliffe DJ, Steven LJ. Putative photoacoustic damage in skin induced by pulsed ArF excimer laser. J Invest Dermatol. 1988;90(5):761–6.

    Article  CAS  PubMed  Google Scholar 

  • Zachary CB. Modulating the Er:YAG laser. Lasers Surg Med. 2000;26:223–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo G. Marini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marini, L.G., Krunic, A.L. (2023). Lasers: Ablative. In: Katsambas, A.D., Lotti, T.M., Dessinioti, C., D'Erme, A.M. (eds) European Handbook of Dermatological Treatments. Springer, Cham. https://doi.org/10.1007/978-3-031-15130-9_121

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15130-9_121

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15129-3

  • Online ISBN: 978-3-031-15130-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics