Skip to main content

An IoT Integrated Air Quality Monitoring Device Based on Microcomputer Technology and Leading Industry Low-Cost Sensor Solutions

  • Conference paper
  • First Online:
Future Access Enablers for Ubiquitous and Intelligent Infrastructures (FABULOUS 2022)

Abstract

Indoor and outdoor air quality monitoring is essential for the prevention of undesired exposure to air pollutants, especially for sensitive groups. Extensive exposure to particulate and gaseous pollutants can cause temporary and chronic respiratory and other diseases and even lead to premature death. The emergence of low-cost sensors enables the development of affordable devices that measure the concentrations of various pollutants and notify humans for the quality of the air that they breath. Current microcomputer technology and the advances in wireless communications, as well as data systems, provide space for Internet of Things devices that monitor, track, store and analyze pollutant concentration measurements enabling data analytics. In this work, we describe the development and testing of a compact, integrated air quality monitoring device that detects and reports fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) levels as well as temperature (T) and relative humidity (RH).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malings, C., et al.: Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation. Aerosol Sci. Technol. 54, 160–174 (2020). https://doi.org/10.1080/02786826.2019.1623863

    Article  Google Scholar 

  2. Lelieveld, J., Haines, A., Pozzer, A.: Age-dependent health risk from ambient air pollution: a modelling and data analysis of childhood mortality in middle-income and low-income countries. Lancet Planet. Health 2, e292–e300 (2018). https://doi.org/10.1016/S2542-5196(18)30147-5

    Article  Google Scholar 

  3. Goldemberg, J., Martinez-Gomez, J., Sagar, A., Smith, K.R.: Household air pollution, health, and climate change: cleaning the air. Environ. Res. Lett. 13, 030201 (2018). https://doi.org/10.1088/1748-9326/aaa49d

    Article  Google Scholar 

  4. Liu, X., et al.: Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 185, 109438 (2020). https://doi.org/10.1016/j.envres.2020.109438

    Article  Google Scholar 

  5. Nuvolone, D., Petri, D., Voller, F.: The effects of ozone on human health. Environ. Sci. Pollut. Res. 25(9), 8074–8088 (2017). https://doi.org/10.1007/s11356-017-9239-3

    Article  Google Scholar 

  6. Atkinson, R.W., Butland, B.K., Anderson, H.R., Maynard, R.L.: Long-term concentrations of nitrogen dioxide and mortality: a meta-analysis of cohort studies. Epidemiology (Cambridge, Mass.). 29, 460 (2018)

    Google Scholar 

  7. Rai, A.C., et al.: End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 607–608, 691–705 (2017). https://doi.org/10.1016/j.scitotenv.2017.06.266

    Article  Google Scholar 

  8. European Commission Joint Research Centre: Evaluation of low-cost sensors for air pollution monitoring: effect of gaseous interfering compounds and meteorological conditions. Publications Office, LU (2017)

    Google Scholar 

  9. Schneider, P., Castell, N., Vogt, M., Dauge, F.R., Lahoz, W.A., Bartonova, A.: Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 106, 234–247 (2017). https://doi.org/10.1016/j.envint.2017.05.005

    Article  Google Scholar 

  10. Kosmopoulos, G., Salamalikis, V., Pandis, S.N., Yannopoulos, P., Bloutsos, A.A., Kazantzidis, A.: Low-cost sensors for measuring airborne particulate matter: field evaluation and calibration at a South-Eastern European site. Sci. Total Environ. 748, 141396 (2020). https://doi.org/10.1016/j.scitotenv.2020.141396

    Article  Google Scholar 

  11. Giordano, M.R., et al.: From low-cost sensors to high-quality data: a summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 158, 105833 (2021). https://doi.org/10.1016/j.jaerosci.2021.105833

    Article  Google Scholar 

  12. Zimmerman, N., et al.: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos. Meas. Tech. 11, 291–313 (2018). https://doi.org/10.5194/amt-11-291-2018

    Article  Google Scholar 

  13. Jain, S., Presto, A.A., Zimmerman, N.: Spatial modeling of daily PM2.5, NO2, and CO concentrations measured by a low-cost sensor network: comparison of linear, machine learning, and hybrid land use models. Environ. Sci. Technol. 55, 8631–8641 (2021). https://doi.org/10.1021/acs.est.1c02653

  14. Landis, M.S., et al.: The U.S. EPA wildland fire sensor challenge: performance and evaluation of solver submitted multi-pollutant sensor systems. Atmos. Environ. 247, 118165 (2021). https://doi.org/10.1016/j.atmosenv.2020.118165

  15. Barkjohn, K.K., Gantt, B., Clements, A.L.: Development and application of a United States-wide correction for PM2.5 data collected with the PurpleAir sensor. Atmos. Meas. Tech. 14, 4617–4637 (2021). https://doi.org/10.5194/amt-14-4617-2021

  16. Tryner, J., et al.: Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmos. Environ. 220, 117067 (2020)

    Article  Google Scholar 

  17. Masey, N., et al.: Temporal changes in field calibration relationships for Aeroqual S500 O3 and NO2 sensor-based monitors. Sens. Actuators B Chem. 273, 1800–1806 (2018). https://doi.org/10.1016/j.snb.2018.07.087

    Article  Google Scholar 

  18. Malings, C., et al.: Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmos. Meas. Tech. 12, 903–920 (2019). https://doi.org/10.5194/amt-12-903-2019

    Article  Google Scholar 

  19. Feenstra, B., et al.: Performance evaluation of twelve low-cost PM2. 5 sensors at an ambient air monitoring site. Atmos. Environ. 216, 116946 (2019)

    Google Scholar 

  20. Christakis, I., Hloupis, G., Stavrakas, I., Tsakiridis, O.: Low cost sensor implementation and evaluation for measuring NO2 and O3 pollutants. In: 2020 9th International Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1–4. IEEE (2020)

    Google Scholar 

  21. Mijling, B., Jiang, Q., de Jonge, D., Bocconi, S.: Field calibration of electrochemical NO2 sensors in a citizen science context. Atmos. Meas. Tech. 11, 1297–1312 (2018). https://doi.org/10.5194/amt-11-1297-2018

    Article  Google Scholar 

  22. Spinelle, L., Gerboles, M., Aleixandre, M.: Performance evaluation of amperometric sensors for the monitoring of O3 and NO2 in ambient air at ppb level. Procedia Eng. 120, 480–483 (2015). https://doi.org/10.1016/j.proeng.2015.08.676

    Article  Google Scholar 

  23. Dallo, F., et al.: Laboratory calibration and field assessment of low-cost electrochemical Ozone sensors in Alpine and Arctic environments. In: Geophysical Research Abstracts (2019)

    Google Scholar 

  24. Zuidema, C., Afshar-Mohajer, N., Tatum, M., Thomas, G., Peters, T., Koehler, K.: Efficacy of paired electrochemical sensors for measuring ozone concentrations. J. Occup. Environ. Hyg. 16, 179–190 (2019)

    Article  Google Scholar 

  25. Yurko, G., et al.: Real-time sensor response characteristics of 3 commercial metal oxide sensors for detection of BTEX and chlorinated aliphatic hydrocarbon organic vapors. Chemosensors 7, 40 (2019). https://doi.org/10.3390/chemosensors7030040

    Article  Google Scholar 

  26. Catini, A., et al.: Development of a sensor node for remote monitoring of plants. Sensors 19, 4865 (2019)

    Article  Google Scholar 

  27. Marinov, M.B., Ganev, B.T., Nikolov, D.N.: Indoor air quality assessment using low-cost commercial off-the-shelf sensors. In: 2021 6th International Symposium on Environment-Friendly Energies and Applications (EFEA), pp. 1–4. IEEE, Sofia, Bulgaria (2021). https://doi.org/10.1109/EFEA49713.2021.9406260

  28. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S — A publish/subscribe protocol for Wireless Sensor Networks. In: 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE 2008), pp. 791–798. IEEE, Bangalore, India (2008). https://doi.org/10.1109/COMSWA.2008.4554519

  29. Light, R.A.: Mosquitto: server and client implementation of the MQTT protocol. J. Open Source Softw. 2, 265 (2017). https://doi.org/10.21105/joss.00265

  30. Nguyen, T.D., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi, A.-R.: DÏoT: a federated self-learning anomaly detection system for IoT. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 756–767. IEEE, Dallas, TX, USA (2019). https://doi.org/10.1109/ICDCS.2019.00080

Download references

Funding

This work was partially supported by the “KRIPIS - Poiotita Zois II” project (MIS 5002464), which has received funding the General Secretariat for Research and Innovation, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis D. Apostolopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apostolopoulos, I.D., Fouskas, G., Pandis, S.N. (2022). An IoT Integrated Air Quality Monitoring Device Based on Microcomputer Technology and Leading Industry Low-Cost Sensor Solutions. In: Perakovic, D., Knapcikova, L. (eds) Future Access Enablers for Ubiquitous and Intelligent Infrastructures. FABULOUS 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 445. Springer, Cham. https://doi.org/10.1007/978-3-031-15101-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15101-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15100-2

  • Online ISBN: 978-3-031-15101-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics