Skip to main content

Bounded-Memory Runtime Enforcement

  • Conference paper
  • First Online:
Model Checking Software (SPIN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13255))

Included in the following conference series:

Abstract

Runtime Enforcement (RE) is a monitoring technique to ensure that a system obeys a set of formal requirements (properties). RE employs an enforcer (a safety wrapper for the system) which modifies the (untrustworthy) output by performing actions such as delaying (by storing/buffering) and suppressing events, when needed. In this paper, to handle practical applications with memory constraints, we propose a new RE paradigm where the memory of the enforcer is bounded/finite. Besides the property to be enforced, the user specifies a bound on the enforcer memory. Bounding the memory poses various challenges such as how to handle the situation when the memory is full, how to optimally discard events from the buffer to accommodate new events and let the enforcer continue operating. We define the bounded-memory RE problem and develop a framework for any regular property. The proposed framework is implemented and its performance evaluated via some examples from application scenarios indicates that the enforcer has reasonable execution time overhead.

This work has been partially supported by IIT Bhubaneswar Seed Grant (SP093). Y. Falcone acknowledges the support from the H2020-ECSEL-2018-IA call -Grant Agreement number 826276 (CPS4EU), from the French ANR project ANR-20- CE39-0009 (SEVERITAS), the Auvergne-Rhône-Alpes research project MOAP, and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 03 December 2022

    In the originally published version of chapter 7 “Bounded-Memory Runtime Enforcement” the Figure 3 was incorrect. The Figure 3 has now been corrected.

Notes

  1. 1.

    A dead state is represented by a square throughout the paper.

  2. 2.

    Experiments were conducted on an Intel Core i7-9700K CPU at 3.60GHz \( \times \) 8, with 32 GB RAM, and running on Ubuntu 18.04.5 LTS.

References

  1. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement using finite and pushdown edit automata. Int. J. Inf. Sec. 12(4), 319–336 (2013). https://doi.org/10.1007/s10207-013-0195-8, http://dx.doi.org/10.1007/s10207-013-0195-8

  2. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, Ú., Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19125-1_6

    Chapter  Google Scholar 

  3. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 533–548. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_51

    Chapter  MATH  Google Scholar 

  4. Dolzhenko, E., Ligatti, J., Reddy, S.: Modeling runtime enforcement with mandatory results automata. Int. J. Inf. Secur. 14(1), 47–60 (2015). https://doi.org/10.1007/s10207-014-0239-8

  5. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp. 40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0_4

    Chapter  Google Scholar 

  6. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and enforce at runtime? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382 (2012). https://doi.org/10.1007/s10009-011-0196-8

  7. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular timed properties by suppressing and delaying events. Syst. Control Lett. 123, 2–41 (2016). https://doi.org/10.1016/j.scico.2016.02.008

    Article  Google Scholar 

  8. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_4

    Chapter  Google Scholar 

  9. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composition, synthesis, and enforcement abilities. Formal Methods Syst. Des. 38(3), 223–262 (2011). https://doi.org/10.1007/s10703-011-0114-4

  10. Fong, P.W.L.: Access control by tracking shallow execution history. In: IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004, pp. 43–55 (2004). https://doi.org/10.1109/SECPRI.2004.1301314

  11. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for run-time security policies. Int. J. Inf. Sec. 4(1-2), 2–16 (2005). https://doi.org/10.1007/s10207-004-0046-8

  12. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies. ACM Trans. Inf. Syst. Secur. 12(3) (2009). https://doi.org/10.1145/1455526.1455532, https://doi.org/10.1007/s10207-004-0046-8

  13. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena Timo, O.: Runtime enforcement of timed properties revisited. Formal Methods Syst. Des. 45(3), 381–422 (2014). https://doi.org/10.1007/s10703-014-0215-y

    Article  MATH  Google Scholar 

  14. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena Timo, O.L.: Runtime enforcement of timed properties. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 229–244. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2_23

    Chapter  MATH  Google Scholar 

  15. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand, H.: Predictive runtime enforcement. Formal Methods Syst. Des. 51(1), 154–199 (2017). https://doi.org/10.1007/s10703-017-0271-1

  16. Pinisetty, S., Roop, P.S., Smyth, S., Tripakis, S., Hanxleden, R.V.: Runtime enforcement of reactive systems using synchronous enforcers. In: Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software, pp. 80–89 (2017)

    Google Scholar 

  17. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforcement of (timed) properties with uncontrollable events. Math. Struct. Comput. Sci. 1–46 (2017). https://doi.org/10.1017/S0960129517000123

  18. Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., Marchand, H.: Enforcement of (timed) properties with uncontrollable events. In: Theoretical Aspects of Computing - ICTAC 2015–12th International Colloquium Cali, Colombia, October 29–31, 2015, Proceedings, pp. 542–560 (2015). https://doi.org/10.1007/978-3-319-25150-9_31

  19. Renard, M., Rollet, A., Falcone, Y.: Runtime enforcement of timed properties using games. Formal Aspects Comput. 32(2), 315–360 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roc SU, G.: On safety properties and their monitoring. Sci. Ann. Comput. Sci. 22(2), 327–365 (2012). https://doi.org/10.7561/SACS.2012.2.327

  21. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1), 30–50 (2000). https://doi.org/10.1145/353323.353382

    Article  Google Scholar 

  22. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement under memory-limitation constraints. Inf. Comput. 206(2), 158–184 (2008). https://doi.org/10.1016/j.ic.2007.07.009, https://www.sciencedirect.com/science/article/pii/S0890540107001320, joint Workshop on Foundations of Computer Security and Automated Reasoning for Security Protocol Analysis (FCS-ARSPA 2006)

  23. Wu, M., Zeng, H., Wang, C.: Synthesizing runtime enforcer of safety properties under burst error. In: NASA Formal Methods - 8th International Symposium, NFM 2016, Minneapolis, MN, USA, 7–9 June 2016, Proceedings, pp. 65–81 (2016). https://doi.org/10.1007/978-3-319-40648-0_6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumya Shankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shankar, S., Rollet, A., Pinisetty, S., Falcone, Y. (2022). Bounded-Memory Runtime Enforcement. In: Legunsen, O., Rosu, G. (eds) Model Checking Software. SPIN 2022. Lecture Notes in Computer Science, vol 13255. Springer, Cham. https://doi.org/10.1007/978-3-031-15077-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15077-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15076-0

  • Online ISBN: 978-3-031-15077-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics