Skip to main content

AI and Intermittency Management of Renewable Energy

  • Chapter
  • First Online:
AI-Powered IoT in the Energy Industry

Part of the book series: Power Systems ((POWSYS))

  • 354 Accesses

Abstract

The existence of sunlight, air, and different resources on Earth must be used wisely for human welfare while also safeguarding the environment and its living creatures. The use of the sunlight and air as a significant source of renewable energy (RE) is already an object of research and development in recent years. The high integration costs of various RE energy sources are a significant hurdle to their development. The RE contributes different energy domains: wind energy, solar energy, geothermal energy, hydro energy, ocean energy, bioenergy, hydrogen energy, and hybrid energy. Nowadays, artificial intelligence (AI) plays an inevitable role in RE, and it could assist in achieving the future goals of the RE. AI approaches in the research and development of the abovementioned RE sources will be comprehensively analyzed. This chapter analyzes and discusses challenges estimating the value creation of AI methods in RE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Active solar heating j department of energy. http://energy.gov/energysaver/active-solarheating. Accessed 10 Nov 2017.

  2. Adhikary P, Roy PK, Mazumdar A. Safe and efficient control of hydro power plant by fuzzy logic. Int J Eng Sci Adv Technol. 2012;2:1270–7.

    Google Scholar 

  3. Chapuis J, Kraus F. Application of fuzzy logic for selection of turbines and weirs in hydro power plants. IFAC Proc Vol. 1999;32:7190–5. https://doi.org/10.1016/s1474-6670(17)57227-4.

    Article  Google Scholar 

  4. Conteh F, Tobaru S, Lotfy ME, Yona A, Senjyu T. An effective Load shedding technique for micro-grids using artificial neural network and adaptive neuro-fuzzy inference system. AIMS Energy. 2017;5:814–37. https://doi.org/10.3934/energy.2017.5.814.

    Article  Google Scholar 

  5. Debez A, Belghith I, Friesen J, Montzka C, Elleuche S. Facing the challenge of sustainable bioenergy production: could halophytes be part of the solution? J Biol Eng. 2017;11(1):27.

    Article  Google Scholar 

  6. Deo NC, Kumar NK. Interpolation of wave heights. Ocean Eng. 2000;27:907–19.

    Article  Google Scholar 

  7. Deo MC, Jha A, Chaphekar AS, Ravikant K. Neural networks for wave forecasting. Ocean Eng. 2001;28:889–98.

    Article  Google Scholar 

  8. Dincer I. Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev. 2000;4:157–75.

    Article  Google Scholar 

  9. Dodge DM. The illustrated history of wind power development. Littleton: U.S. Federal Wind Energy Program; 2006. Available at: http://www.telosnet.com/wind/. Accessed Dec 2010.

  10. Elliott D. Renewable energy and sustainable futures. Futures. 2000;32:261–74.

    Article  Google Scholar 

  11. Foley AM, Leahy PG, Marvuglia A, McKeogh EJ. Current methods and advances in forecasting of wind power generation. Renew Energy. 2012;37(1):1–8.

    Article  Google Scholar 

  12. Global Wind Energy Council Report. http://files.gwec.net/files/GWR2017.pdf (2017). Accessed 7 Mar 2019.

  13. Green MA. Solar cells: operating principles, technology, and system applications. Englewood Cliffs: Prentice-Hall; 1982.

    Google Scholar 

  14. International Energy Agency. CO2 Emissions from Fuel Consumption Report—2019 Edition. Available online: http://wds.iea.org/wds/pdf/WorldCo2_Documentation.pdf. Accessed 12 May 2020.

  15. Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018;17(1):36.

    Article  Google Scholar 

  16. Khare V, Nema S, Baredar P. Fundamental and principles of the ocean energy system. In: Ocean energy modeling and simulation with big data. Elsevier; 2020. p. 1–48.

    Google Scholar 

  17. Kreider JF, Kreith F. Solar energy handbook. New York: McGraw-Hill; 1981.

    Book  Google Scholar 

  18. Lalitha K, Kumar DR, Poongodi C, Arumugam J. Healthcare internet of things – the role of communication tools and technologies. In: Chilamkurti N, Poongodi T, Balusamy B, editors. Blockchain, internet of things, and artificial intelligence. Chapman and Hall/CRC; 2021. p. 331–48. https://doi.org/10.1201/9780429352898-17.

    Chapter  Google Scholar 

  19. Makarynskyy O. Improving wave predictions with artificial neural networks. Ocean Eng. 2004;31(5–6):709–24.

    Article  Google Scholar 

  20. Mandal S. Back propagation neural network in tidal level forecasting. J Waterw Port Coast Ocean Eng. 2001;127(1):54–5.

    Article  Google Scholar 

  21. Manwell JF, McGowan JG, Rogers AL. Wind energy explained: theory, design and application. Chichester: John Wiley & Sons; 2009.

    Book  Google Scholar 

  22. Michalski RS, Carbonell JG, Mitchell TM. Machine learning: an artificial intelligence approach. Berlin: Springer-Verlag; 1984.

    MATH  Google Scholar 

  23. Mosavi A, Salimi M, Ardabili SF, Rabczuk T, Shamshirband S, Varkonyi-Koczy AR. State of the art of machine learning models in energy systems, a systematic review. Energies. 2019;12:1301. https://doi.org/10.3390/en12071301.

    Article  Google Scholar 

  24. Pérez-Díaz JI, Fraile-Ardanuy J. Neural networks for optimal operation of a run-of-river adjustable speed hydropower plant with axial-flow propeller turbine. In: 2008 16th Mediterranean Conference on Control and Automation – Conference Proceedings, MED’0; 2008. p. 309–314. https://doi.org/10.1109/MED.2008.4602228.

  25. Poole D, Mackworth A. Artificial intelligence foundation of computational agents. Cambridge: Cambridge University Press; 2010.

    Book  MATH  Google Scholar 

  26. Qu X, Yang J, Chang M. A deep learning model for concrete dam deformation prediction based on RS-LSTM. J Sens. 2019, 2019:1–14. https://doi.org/10.1155/2019/4581672.

  27. Robinius M, Linssen J, Grube T, et al. Comparative analysis of infrastructures: hydrogen fueling and electric charging of vehicles. Jülich Research Center Central Library; 2018.

    Google Scholar 

  28. Russell S, Norvig P. Artificial intelligence: a modern approach. 3rd ed. Prentice Hall; 2010. https://doi.org/10.1017/S0269888900007724. arXiv:9809069v1

    Book  MATH  Google Scholar 

  29. Saleem YCN, Rehmani MH, Copeland R. Internet of things-aided smart grid: technologies, architectures, applications, prototypes, and future research directions. IEEE Access. 2019;7:62962–3003. [CrossRef]

    Article  Google Scholar 

  30. Senthil Kumar AR, Goyal MK, Ojha CSP, Singh RD, Swamee PK. Application of artificial neural network, fuzzy logic and decision tree algorithms for modelling of streamflow at Kasol in India. Water Sci Technol. 2013;68:2521–6. https://doi.org/10.2166/wst.2013.491.

    Article  Google Scholar 

  31. Stober I, Bucher K. Geothermal energy resources. In: Geothermal energy. Berlin, Heidelberg: Springer; 2013.

    Chapter  Google Scholar 

  32. Tahir Abdul HR, Dincer I. Sustainable energy management. In: Comprehensive energy systems, vol. 5. Elsevier; 2018. p. 315–50.

    Google Scholar 

  33. Theophilus EC, Eneh P. Design and development of NeuroFuzzy controller for hydropower generator stability. Int J Sci Eng Res. 2016;7(6):10561–1063.

    Google Scholar 

  34. Turban E, Frenzel LE. Expert systems and applied artificial intelligence. New Jersey: Prentice Hall; 1992.

    Google Scholar 

  35. Turner JA. A realizable renewable energy future. Science. 1999;285:687–9.

    Article  Google Scholar 

  36. U.S. D.O.E. Office of Energy Efficiency and Renewable Energy. Power tower system concentrating solar power basics. https://www.energy.gov/eere/energybasics/articles/power-tower-system-concentrating-solar-power-basics (2013). Accessed 15 Nov 2017.

  37. U.S. Energy Information Administration. Annual Energy Outlook. 24 January 2019. Available online: https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf. Accessed 12 May 2020.

  38. Vapnik V. The nature of statistical learning theory. New York: Springer-Verlag; 2013.

    MATH  Google Scholar 

  39. Vijayalakshmi S, et al. Classification of tiny colorectal polyps using deep neural network. Turkish Journal of Physiotherapy and Rehabilitation. 2021;32(2):1294–300. [SCOPUS INDEXED]

    Google Scholar 

  40. WBA. Official supporter of WBA Enerstena Group of Companies WBA Global Bioenergy Statistics 2017. https://worldbioenergy.org/global-bioenergystatistics (2019).

  41. Xu H, Wang D, Liu J. Process control optimization for hydroelectric power based on neural network algorithm. Adv Model Anal C. 2017;72:156–67. https://doi.org/10.18280/ama_c.720204.

    Article  Google Scholar 

  42. YaÅŸar F. Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type. Fuel. 2020;264:116817.

    Article  Google Scholar 

  43. Zhao H, Magoulès F. A review on the prediction of building energy consumption. Renew Sust Energ Rev. 2012;16(6):3586–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagaraja, P., Gayathri, S.P., Karthigai Selvi, S., Lakshmanan, S. (2023). AI and Intermittency Management of Renewable Energy. In: Vijayalakshmi, S., ., S., Balusamy, B., Dhanaraj, R.K. (eds) AI-Powered IoT in the Energy Industry. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-15044-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15044-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15043-2

  • Online ISBN: 978-3-031-15044-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics