Skip to main content

Radar Sensing of Merapi Volcano

  • Chapter
  • First Online:
Merapi Volcano

Part of the book series: Active Volcanoes of the World ((AVOLCAN))

Abstract

Monitoring and assessing eruption hazard at Merapi volcano are challenging due to steep slopes, the harsh environment at the summit, and hazardous access during both volcanic crises and quiescent intervals. While passive remote sensing techniques often fail due to cloud coverage, active sensing techniques are increasingly used and bridge fields from mapping to geophysical studies. In particular, synthetic aperture radar (SAR) remote sensing and interferometric products are highly valuable at Merapi and similar volcanoes elsewhere, allowing views of the summit, crater, and dome, even when these are covered by dense rain or ash clouds. SAR and interferometric SAR (InSAR) permit assessment of eruption precursors, quantifying rapid geomorphological changes that occur during dome growth and fracturing, such as those in 2010, 2013–14, and 2018. Radar sensing also allows precisely mapping of volcanic deposits, lahars and damage, monitoring subtle ground displacements, and generating high-resolution digital elevation models. This chapter reviews the benefits of radar investigations conducted at Merapi volcano and discusses future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RJ, Perger WF, Rose WI, Kostinski A (1996) Measurements of the complex dielectric constant of volcanic ash from 4 to 19 GHz. J Geophys Res: Solid Earth 101(B4):8175–8185

    Google Scholar 

  • Anantrasirichai N, Biggs J, Albino F, Bull D (2019) A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets. Remote Sens Environ 230:111179

    Google Scholar 

  • Arnold DWD, Biggs J, Anderson K, Vargas SV, Wadge G, Ebmeier SK, Naranjo MF, Mothes P (2017) Decaying lava extrusion rate at el reventador volcano, ecuador, measured using high-resolution satellite radar. J Geophys Res-Sol Earth 122(12):9966–9988

    Google Scholar 

  • Bamler R (2000) Principles of synthetic aperture radar. Surv Geophys 21(2–3):147–157

    Google Scholar 

  • Beauducel F, Cornet FH (1999) Collection and three-dimensional modeling of GPS and tilt data at Merapi volcano Java. J Geophys Res 104(1):725–736

    Google Scholar 

  • Bignami C, Ruch J, Chini M, Neri M (2012) Volcanic product detection after the 2010 Merapi eruption by using Vhr Sar Data. In: 2012 IEEE international geoscience and remote sensing symposium (Igarss), pp 1337–1340

    Google Scholar 

  • Bignami C, Ruch J, Chini M, Neri M, Buongiorno MF, Hidayati S, Sayudi DS, Surono (2013) Pyroclastic density current volume estimation after the 2010 Merapi volcano eruption using X-band SAR. J Volcanol Geotherm Res 261:236–243

    Google Scholar 

  • Boudon G, Balcone-Boissard H, Villemant B, Morgan DJ (2015) What factors control superficial lava dome explosivity? Sci Rep 5:14551

    Article  Google Scholar 

  • Bredemeyer S, Ulmer FG, Hansteen TH, Walter TR (2018) Radar path delay effects in volcanic gas plumes: the case of Lascar volcano Northern Chile. Remote Sens 10(10):1514

    Article  Google Scholar 

  • Budi-Santoso A, Beauducel F, Nandaka IGMA, Humaida H, Costa F, Widiwijayanti C, Iguchi M, Métaxian J-P, Rudianto I, Rozin M, Sulistiyani, Nurdin I, Kelfoun K, Byrdina S, Pinel V, Fahmi AA, Laurin A, Rizal MH, Dahamna N (2023) The Merapi volcano monitoring system. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 409–436

    Google Scholar 

  • Carn SA (1999) Application of synthetic aperture radar (SAR) imagery to volcano mapping in the humid tropics: a case study in East Java Indonesia. Bull Volcanol 61(1–2):92–105

    Article  Google Scholar 

  • Charbonnier SJ, Germa A, Connor CB, Gertisser R, Preece K, Komorowski JC, Lavigne F, Dixon T, Connor L (2013) Evaluation of the impact of the 2010 pyroclastic density currents at Merapi volcano from high-resolution satellite imagery, field investigations and numerical simulations. J Volcanol Geotherm Res 261:295–315

    Article  Google Scholar 

  • Chaussard E, Amelung F (2012) Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophy Res Lett 39:L21311

    Article  Google Scholar 

  • Chaussard E, Amelung F, Aoki Y (2013) Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. J Geophys Res-Sol Earth 118(8):3957–3969

    Article  Google Scholar 

  • Chua KM, Wan Q, Liew SC, Thouret JC (2015) Persistent scatterer InSAR for monitoring active volcanoes: measuring deformation at Merapi using ALOS PALSAR Data. In: 2015 IEEE 5th Asia-Pacific conference on synthetic aperture radar (Apsar), pp 859–861

    Google Scholar 

  • Cummins PR, Meilano I (2017) Geohazards in Indonesia: earth science for disaster risk reduction. Geol Soc Lond Spec Publ 441, p 221

    Google Scholar 

  • Darmawan H, Putra R, Budi-Santoso A, Humaida H, Walter TR (2023) Morphology and instability of the Merapi lava dome monitored by unoccupied aircraft systems. In: Gertisser R, Troll VR, Walter TR, Nandaka IGMA, Ratdomopurbo A (eds) Merapi volcano—geology, eruptive activity, and monitoring of a high-risk volcano. Springer, Berlin, Heidelberg, pp 457–472

    Google Scholar 

  • Darmawan H, Walter TR, Brotopuspito KS, Subandriyo NIGMA (2018a) Morphological and structural changes at the Merapi lava dome monitored in 2012–15 using unmanned aerial vehicles (UAVs). J Volcanol Geoth Res 349:256–267

    Article  Google Scholar 

  • Darmawan H, Walter TR, Troll VR, Budi-Santoso A (2018b) Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption. Nat Hazard Earth Sys 18(12):3267–3281

    Article  Google Scholar 

  • de Michele M, Raucoules D, Wegmuller U, Bignami C (2013) Synthetic aperture radar (SAR) doppler anomaly detected during the 2010 Merapi (Java, Indonesia) Eruption. IEEE Geosci Remote S 10(6):1319–1323

    Article  Google Scholar 

  • Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41(1):1001

    Article  Google Scholar 

  • Elliot JR, Walters RJ, Wright TJ (2016) The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat Commun 7:13844

    Article  Google Scholar 

  • Fink JH, Anderson SW (2000) Lava domes and Coulees. Academic Press, pp 307–319

    Google Scholar 

  • Francis P, Rothery D (2000) Remote sensing of active volcanoes. Annu Rev Earth Planet Sci 28:81–106

    Article  Google Scholar 

  • Gerstenecker C, Laufer G, Steineck D, Tiede C, Wrobel B (2005) Validation of digital elevation models around Merapi Volcano, Java Indonesia. Nat Hazards Earth Syst Sci 5(6):863–876

    Article  Google Scholar 

  • Gertisser R, Charbonnier S, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java Indonesia. Bull Volcanol 74(5):1213–1233

    Article  Google Scholar 

  • Hartmann MA (1935) Die Ausbrüche des G. Merapi (Mittel- Java) bis zum Jahre 1883. N Jahrb Mineral 75:127–162

    Google Scholar 

  • Heap MJ, Troll VR, Kushnir ARL, Gilg HA, Collinson ASD, Deegan FM, Darmawan H, Seraphine N, Neuberg J, Walter TR (2019) Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nat Commun 10:5063

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31(23)

    Google Scholar 

  • James MR, Carr BB, D’Arcy F, Diefenbach AK, Dietterich HR, Fornaciai A, Lev E, Liu EJ, Pieri DC, Rodgers M, Smets B, Terada A, von Aulock FW, Walter TR, Wood KT, Zorn EU (2020) Volcanological applications of unoccupied aircraft systems (UAS): Developments, strategies, and future challenges Volcanica 3(1):67–114

    Google Scholar 

  • Kadavi PR, Lee WJ, Lee CW (2017) Analysis of the pyroclastic flow deposits of Mount Sinabung and Merapi using Landsat imagery and the artificial neural networks approach. Appl Sci 7(9):935

    Article  Google Scholar 

  • Komorowski JC, Jenkins S, Baxter PJ, Picquout A, Lavigne F, Charbonnier S, Gertisser R, Preece K, Cholik N, Budi-Santoso A, Surono (2013) Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents. J Volcanol Geotherm Res 261:260–294

    Google Scholar 

  • Kubanek J, Westerhaus M, Schenk A, Aisyah N, Brotopuspito KS, Heck B (2015) Volumetric change quantification of the 2010 Merapi eruption using TanDEM-X InSAR. Remote Sens Environ 164:16–25

    Article  Google Scholar 

  • Le TT, Atto AM, Trouve E, Solikhin A, Pinel V (2015) Change detection matrix for multitemporal filtering and change analysis of SAR and PolSAR image time series. ISPRS J Photogramm Remote Sens 107:64–76

    Article  Google Scholar 

  • Lu Z, Dzurisin D (2018) Radar monitoring of volcanic activities. In: Singh R, Bartlett D (eds) Natural hazards: earthquakes. Taylor & Francis, Volcanoes and Landslides, pp 421–446

    Chapter  Google Scholar 

  • Lu Z, Freymueller JT (1998) Synthetic aperture radar interferometry coherence analysis over Katmai volcano group Alaska. J Geophys Res-Sol Earth 103(B12):29887–29894

    Article  Google Scholar 

  • MacKay ME, Rowland SK, Mouginis-Mark PJ, Garbeil H (1998) Thick lava flows of Karisimbi volcano, Rwanda: insights from SIR-C interferometric topography. Bull Volcanol 60(4):239–251

    Article  Google Scholar 

  • Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570

    Article  Google Scholar 

  • Meyer FJ, McAlpin DB, Gong W, Ajadi O, Arko S, Webley PW, Dehn J (2015) Integrating SAR and derived products into operational volcano monitoring and decision support systems. ISPRS J Photogramm Remote Sens 100:106–117

    Article  Google Scholar 

  • Mouginis-Mark PJ (1995) Preliminary observations of volcanoes with the SIR-C radar. Bull Volcanol 33:934–941

    Google Scholar 

  • Pallister JS, Schneider DJ, Griswold JP, Keeler RH, Burton WC, Noyles C, Newhall CG, Ratdomopurbo A (2013) Merapi 2010 eruption-chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. J Volcanol Geotherm Res 261:144–152

    Article  Google Scholar 

  • Pamungkas AM, Osawa T, Adnyana A (2014) Monitoring of Merapi volcano deformation using interferometry synthetic aperture radar (InSAR) technique. J Environ 1:1–9

    Google Scholar 

  • Pepe A, Calo F (2017) A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of earth’s surface displacements. Appl Sci 7(12):1264

    Article  Google Scholar 

  • Pinel V, Poland MP, Hooper A (2014) Volcanology: lessons learned from synthetic aperture radar imagery. J Volcanol Geotherm Res 289:81–113

    Article  Google Scholar 

  • Plank S (2014) Rapid damage assessment by means of multi-temporal SAR—a comprehensive review and outlook to Sentinel-1. Remote Sens 6(6):4870–4906

    Article  Google Scholar 

  • Poland M (2010) Localized surface disruptions observed by InSAR during strong earthquakes in Java and Hawai’i. Bull Seism Soc Am 100(2):532–540

    Article  Google Scholar 

  • Ratdomopurbo A, Beauducel F, Subandriyo J, Nandaka IGMA, Newhall CG, Suharna SDS, Suparwaka H, Sunarta, (2013) Overview of the 2006 eruption of Mt Merapi. J Volcanol Geotherm Res 261:87–97

    Article  Google Scholar 

  • Ratdomopurbo A, Poupinet G (2000) An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983–1994. J Volcanol Geotherm Res 100(1–4):193–214

    Article  Google Scholar 

  • Rosen PA, Hensley S, Zebker HA, Webb FH, Fielding EJ (1996) Surface deformation and coherence measurements of Kilauea volcano, Hawaii, from SIR-C radar interferometry. J Geophys Res-Planet 101(E10):23109–23125

    Article  Google Scholar 

  • Rowland SK, Smith GA, Mouginismark PJ (1994) Preliminary Ers-1 Observations of Alaskan and Aleutian Volcanoes. Remote Sens Environ 48(3):358–369

    Article  Google Scholar 

  • Sabins FF (1983) Geologic interpretation of space shuttle radar images of Indonesia. AAPG Bull 67:2076–2099

    Google Scholar 

  • Saepuloh A, Aisyah N, Urai M (2015a) Detecting surface structures after large eruption of Mt. Merapi in 2010 using ALOS/PALSAR data. Procedia Earth Plan Sci 12:84–92

    Article  Google Scholar 

  • Saepuloh A, Koike K, Omura M, Iguchi M, Setiawan A (2010) SAR—and gravity change-based characterization of the distribution pattern of pyroclastic flow deposits at Mt. Merapi during the past 10 years. Bull Volcanol 72(2):221–232

    Google Scholar 

  • Saepuloh A, Urai M, Aisyah N, Sunarta WC, Subandriyo JP (2013) Interpretation of ground surface changes prior to the 2010 large eruption of Merapi volcano using ALOS/PALSAR, ASTER TIR and gas emission data. J Volcanol Geotherm Res 261:130–143

    Article  Google Scholar 

  • Saepuloh A, Urai M, Widiwijayanti C, Aisyah N (2011) Observing 2006–2010 Ground Deformations of Merapi Volcano (Indonesia) Using Alos/Palsar and Aster Tir Data. IEEE Int Geosci Remote Sens Symp:1634–1637

    Google Scholar 

  • Saepuloh A, Wikantika K, Urai M (2015b) Observing lava dome roughness on synthetic aperture radar (SAR) data case study at Mt. Sinabung and Merapi—Indonesia. In: 2015b IEEE 5th Asia-Pacific conference on synthetic aperture radar (Apsar), pp 645–648

    Google Scholar 

  • Schneider DJ, Hoblitt RP (2013) Doppler weather radar observations of the 2009 eruption of Redoubt volcano, Alaska. J Volcanol Geotherm Res 259:133–144

    Article  Google Scholar 

  • Siswowidjoyo S, Suryo I, Yokoyama I (1995) Magma eruption rates of Merapi volcano, Central Java, Indonesia during one century (1890–1992). Bull Volcanol 57(2):111–116

    Article  Google Scholar 

  • Solikhin A, Pinel V, Vandemeulebrouck J, Thouret JC, Hendrasto M (2015a) Mapping the 2010 Merapi pyroclastic deposits using dual-polarization synthetic aperture radar (SAR) data. Remote Sens Environ 158:180–192

    Article  Google Scholar 

  • Solikhin A, Thouret JC, Liew SC, Gupta A, Sayudi DS, Oehler JF, Kassouk Z (2015b) High-spatial-resolution imagery helps map deposits of the large (VEI 4) 2010 Merapi volcano eruption and their impact. Bull Volcanol 77:20

    Article  Google Scholar 

  • Surono JP, Pallister J, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Carn S, Oppenheimer C, Lavigne F (2012) The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241–242:121–135

    Article  Google Scholar 

  • Thouret JC, Gupta A, Lube G, Liew SC, Cronin SJ, Surono (2010) The 2006 pyroclastic deposits of Merapi volcano, Java, Indonesia: high-spatial resolution IKONOS images and complementary ground based observations. Remote Sens Environ 114(9):1949–1967

    Google Scholar 

  • Thouret JC, Kassouk Z, Gupta A, Liew SC, Solikhin A (2015) Tracing the evolution of 2010 Merapi volcanic deposits (Indonesia) based on object-oriented classification and analysis of multi-temporal, very high resolution images. Remote Sens Environ 170:350–371

    Article  Google Scholar 

  • Valade S, Ley A, Massimetti F, D’Hondt O, Laiolo M, Coppola D, Loibl D, Hellwich O, Walter TR (2019) Towards global volcano monitoring using multisensor Sentinel missions and artificial intelligence: the MOUNTS monitoring system. Remote Sens 11(13):1528

    Article  Google Scholar 

  • Voge M, Hort M, Seyfried R, Ratdomopurbo A (2008) Automatic classification of dome instabilities based on Doppler radar measurements at Merapi volcano, Indonesia: Part II. Geophys J Intern 172(3):1207–1218

    Article  Google Scholar 

  • Voight B (2000) Structural stability of andesite volcanoes and lava domes. Phil Trans Roy Soc Lond 358(1770):1663–1703

    Article  Google Scholar 

  • Wadge G, Cole P, Stinton A, Komorowski JC, Stewart R, Toombs AC, Legendre Y (2011) Rapid topographic change measured by high-resolution satellite radar at Soufriere Hills volcano, Montserrat, 2008–2010. J Volcanol Geotherm Res 199(1–2):142–152

    Article  Google Scholar 

  • Wadge G, Haynes M (1998) Cover—radar images growth of Soufriere hills volcano Montserrat. Int J Remote Sens 19(5):797–800

    Article  Google Scholar 

  • Walter TR, Ratdomopurbo A, Subandriyo AN, Brotopuspito KS, Salzer J, Luhr B (2013) Dome growth and coulee spreading controlled by surface morphology, as determined by pixel offsets in photographs of the 2006 Merapi eruption. J Volcanol Geoth Res 261:121–129

    Article  Google Scholar 

  • Walter TR, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Luehr BG, Dahm T (2015) Volcano-tectonic control of Merapi’s lava dome splitting: the November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639:23–33

    Article  Google Scholar 

  • Walter TR, Wang R, Luehr BG, Wassermann J, Behr Y, Parolai S, Anggraini A, Gunther E, Sobiesiak M, Grosser H, Wetzel HU, Milkereit C, Brotopuspito PJKS, Harjadi P, Zschau J (2008) The 26 May 2006 magnitude 6.4 Yogyakarta earthquake south of Mt. Merapi volcano: Did lahar deposits amplify ground shaking and thus lead to the disaster? Geochem Geophy Geosyst 9(5):Q05006

    Google Scholar 

  • Yulianto F, Sofan P, Khomarudin MR, Haidar M (2013) Extracting the damaging effects of the 2010 eruption of Merapi volcano in Central Java. Indonesia. Nat Haz 66(2):229–247

    Article  Google Scholar 

  • Zebker HA, Vanzyl JJ (1991) Imaging radar polarimetry: a review. Proc IEEE 79(11):1583–1606

    Article  Google Scholar 

  • Zebker HA, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens 30(5):950–959

    Article  Google Scholar 

Download references

Acknowledgements

This work summarises the benefits of satellite synthetic aperture radar data that are provided by various space agencies, namely, the German Aerospace Centre DLR, the Canadian Space Agency, the European Space Center (ESA), and NASA's Space Radar Laboratory. In particular, the DLR team supported the collection of a large set of high-resolution spotmode TerraSAR-X data acquired at Merapi volcano for further research. Discussions and collaborations with colleagues at the Department of Research and Development on Technology for Geological Disaster (BPPTKG), Gadjah Mada University (UGM), and research centres in France, Germany, and the USA are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walter, T.R. (2023). Radar Sensing of Merapi Volcano. In: Gertisser, R., Troll, V.R., Walter, T.R., Nandaka, I.G.M.A., Ratdomopurbo, A. (eds) Merapi Volcano. Active Volcanoes of the World. Springer, Cham. https://doi.org/10.1007/978-3-031-15040-1_14

Download citation

Publish with us

Policies and ethics