Skip to main content

Tickle Tuner - Haptic Smartphone Cover for Cochlear Implant Users’ Musical Training

  • Conference paper
  • First Online:
Haptic and Audio Interaction Design (HAID 2022)

Abstract

Cochlear implants (CIs) allow individuals that can no longer benefit from hearing aids to understand speech with remarkable efficiency. On the other hand, they perform poorly in music perception. Previous research suggest that music experience can be enhanced with the use of other senses such as touch. We present Tickle Tuner, a haptic feedback device suitable for musical training of CI users. The prototype is composed of two high-quality haptic actuators and an external Digital to Analogue Converter (DAC) hosted in a 3D printed enclosure coupled with a smartphone. We describe the design and implementation of the prototype and the analysis of its characteristics. We introduce a test bench for the design of different mappings between sound and vibrations which we assessed with a Melodic Contour Identification (MCI) task. Results from a group of fifteen normal hearing participants using CIs simulation showed significantly higher performance (increase of 26% more correct answers) with haptic feedback than without.

In collaboration with Oticon Medical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://openscad.org, last access July 18, 2022.

  2. 2.

    https://alicevision.org/#meshroom, last access July 18, 2022.

  3. 3.

    https://www.blender.org/, last access July 18, 2022.

  4. 4.

    https://ultimaker.com/3d-printers/ultimaker-3, last access July 18, 2022.

  5. 5.

    https://www.actronika.com/, last access July 18, 2022.

  6. 6.

    https://puredata.info/, last access July 18, 2022.

  7. 7.

    https://danieliglesia.com/mobmuplat/, last access July 18, 2022.

  8. 8.

    https://audiomodeling.com/swam-engine/, last access July 18, 2022.

  9. 9.

    https://www.xlnaudio.com/products/addictive_keys, last access July 18, 2022.

  10. 10.

    http://www.tigerspeech.com/angelsim/angelsim_about, last access July 18, 2022.

  11. 11.

    https://www.reaper.fm/, last access July 18, 2022.

References

  1. Birnbaum, D.M., Wanderley, M.M.: A systematic approach to musical vibrotactile feedback, p. 8 (2011)

    Google Scholar 

  2. Chafe, C.: Tactile audio feedback. In: Proceedings of the International Computer Music Conference, pp. 76–76. International computer music accociation (1993)

    Google Scholar 

  3. Cowan, R.S., Sarant, J.Z., Galvin, K.L., Alcantara, J.I., Blamey, P.J., Clark, G.M.: The tickle talker: a speech perception aid for profoundly hearing impaired children. Sci. Publ. 5(300), 1989–1990 (1990)

    Google Scholar 

  4. Dementyev, A., Getreuer, P., Kanevsky, D., Slaney, M., Lyon, R.: VHP: vibrotactile haptics platform for on-body applications, p. 15 (2021)

    Google Scholar 

  5. Drennan, W.R., et al.: Clinical evaluation of music perception, appraisal and experience in cochlear implant users. Int. J. Audiol. 54(2), 114–123 (2015). https://doi.org/10.3109/14992027.2014.948219

    Article  Google Scholar 

  6. Zeng, F.G., Rebscher, S., Harrison, W., Sun, X., Feng, H.,: Cochlear implants: system design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008). https://doi.org/10.1109/RBME.2008.2008250

  7. Farina, A.: Simultaneous measurement of impulse response and distortion with a swept-sine technique, p. 24 (2000)

    Google Scholar 

  8. Fletcher, M.D.: Can haptic stimulation enhance music perception in hearing-impaired listeners? Front. Neurosci. 15, 723877 (2021). https://doi.org/10.3389/fnins.2021.723877

    Article  Google Scholar 

  9. Fletcher, M.D., Cunningham, R.O., Mills, S.R.: Electro-haptic enhancement of spatial hearing in cochlear implant users. Sci. Rep. 10(1), 1621 (2020). https://doi.org/10.1038/s41598-020-58503-8

    Article  Google Scholar 

  10. Fletcher, M.D., Hadeedi, A., Goehring, T., Mills, S.R.: Electro-haptic enhancement of speech-in-noise performance in cochlear implant users. Sci. Rep. 9(1), 11428 (2019). https://doi.org/10.1038/s41598-019-47718-z

    Article  Google Scholar 

  11. Galvin, J.J., Fu, Q.J., Nogaki, G.: Melodic contour identification by cochlear implant listeners. Ear Hear. 28(3), 302–319 (2007). https://doi.org/10.1097/01.aud.0000261689.35445.20

    Article  Google Scholar 

  12. Galvin, J.J., Fu, Q.J., Shannon, R.V.: Melodic contour identification and music perception by cochlear implant users. Ann. N. Y. Acad. Sci. 1169(1), 518–533 (2009). https://doi.org/10.1111/j.1749-6632.2009.04551.x

    Article  Google Scholar 

  13. Garcia-Valle, G., Ferre, M., Brenosa, J., Vargas, D.: Evaluation of presence in virtual environments: haptic vest and user’s haptic skills. IEEE Access 6, 7224–7233 (2018). https://doi.org/10.1109/ACCESS.2017.2782254

    Article  Google Scholar 

  14. Park, G., Choi, S.: Perceptual space of amplitude-modulated vibrotactile stimuli. In: 2011 IEEE World Haptics Conference, pp. 59–64. IEEE, Istanbul, June 2011. https://doi.org/10.1109/WHC.2011.5945462

  15. Jiam, N.T., Caldwell, M.T., Limb, C.J.: What does music sound like for a cochlear implant user? Otol. Neurotology 38(8), e240–e247 (2017). https://doi.org/10.1097/MAO.0000000000001448

    Article  Google Scholar 

  16. Jones, L.A., Sarter, N.B.: Tactile displays: guidance for their design and application. Hum. Fact. J. Hum. Fact. Ergon. Soc. 50(1), 90–111 (2008). https://doi.org/10.1518/001872008X250638

    Article  Google Scholar 

  17. Karam, M., Russo, F., Fels, D.: Designing the model human cochlea: an ambient crossmodal audio-tactile display. IEEE Trans. Haptics 2(3), 160–169 (2009). https://doi.org/10.1109/TOH.2009.32

    Article  Google Scholar 

  18. Limb, C.J., Roy, A.T.: Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hear. Res. 308, 13–26 (2014). https://doi.org/10.1016/j.heares.2013.04.009

    Article  Google Scholar 

  19. Looi, V., Mcdermott, H., McKay, C.M., Hickson, L.: The effect of cochlear implantation on music perception by adults with usable pre-operative acoustic hearing. Int. J. Audiol. 47, 257–268 (2008)

    Article  Google Scholar 

  20. Luo, X., Hayes, L.: Vibrotactile stimulation based on the fundamental frequency can improve melodic contour identification of normal-hearing listeners with a 4-channel cochlear implant simulation. Front. Neurosci. 13, 1145 (2019). https://doi.org/10.3389/fnins.2019.01145

    Article  Google Scholar 

  21. Merchel, S., Altinsoy, M.E.: Psychophysical comparison of the auditory and tactile perception: a survey. J. Multi. User Interfaces 14(3), 271–283 (2020). https://doi.org/10.1007/s12193-020-00333-z

    Article  Google Scholar 

  22. Omran, S.A., Lai, W., Dillier, N.: Pitch ranking, melody contour and instrument recognition tests using two semitone frequency maps for nucleus cochlear implants. EURASIP J. Audio Speech Music Process. 2010(1), 1–16 (2010). https://doi.org/10.1155/2010/948565

    Article  Google Scholar 

  23. Russo, F.A., Ammirante, P., Fels, D.I.: Vibrotactile discrimination of musical timbre. J. Exp. Psychol. Hum. Percept. Perform. 38(4), 822–826 (2012). https://doi.org/10.1037/a0029046

    Article  Google Scholar 

  24. Singhal, T., Schneider, O.: Juicy haptic design: vibrotactile embellishments can improve player experience in games, p. 11 (2021)

    Google Scholar 

  25. Tan, H.Z., Gray, R., Young, J.J., Traylor, R.: A haptic back display for attentional and directional cueing, p. 20 (2003)

    Google Scholar 

  26. Verrillo, R.T.: Vibration sensation in humans. Music Percept. 9(3), 281–302 (1992). https://doi.org/10.2307/40285553

    Article  Google Scholar 

  27. Weber, M., Saitis, C.: Towards a framework for ubiquitous audio-tactile design, p. 9 (2020)

    Google Scholar 

  28. Wu, J., Zhang, J., Yan, J., Liu, W., Song, G.: Design of a vibrotactile vest for contour perception. Int. J. Adv. Rob. Syst. 9(5), 166 (2012). https://doi.org/10.5772/52373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ganis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ganis, F., Vatti, M., Serafin, S. (2022). Tickle Tuner - Haptic Smartphone Cover for Cochlear Implant Users’ Musical Training. In: Saitis, C., Farkhatdinov, I., Papetti, S. (eds) Haptic and Audio Interaction Design. HAID 2022. Lecture Notes in Computer Science, vol 13417. Springer, Cham. https://doi.org/10.1007/978-3-031-15019-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15019-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15018-0

  • Online ISBN: 978-3-031-15019-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics