Skip to main content

Climatic Challenge for Global Viticulture and Adaptation Strategies

  • Chapter
  • First Online:
Global Agricultural Production: Resilience to Climate Change

Abstract

Climate change has posed mammoth challenges for the global viticulture, and almost all the growing regions are facing the mounting pressure exerted owing to this unchecked climatic challenge. Pedo-climatic and topographic features largely affect the production and quality of table and wine. Climatic variability in the form of rising CO2 and elevated global temperature with increased intensity of water scarcity during the growing season has contributed to the unsustainability of global viticulture. Early phenological development, shortening of phenophases, poor berry development, early maturity with lower yield and inferior quality are the consequences of these challenges. Moreover, the physiological activities of vines, e.g. photosynthetic activity, transpiration and stomatal conductance, are negatively affected along lower water use efficiency (WUE), hence higher irrigation demands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Opazo C, Ortega-Farias S, Fuentes S (2010) Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality. An irrigation scheduling application to achieve regulated deficit irrigation. Agric Water Manag 97(7):956–964

    Article  Google Scholar 

  • Ahmed M, Ahmad S (2019) Carbon dioxide enrichment and crop productivity. In: Agronomic crops. Springer, Singapore, pp 31–46

    Chapter  Google Scholar 

  • Arrizabalaga-Arriazu M, Morales F, Irigoyen JJ, Hilbert G, Pascual I (2020) Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: elevated CO2 and temperature. J Plant Physiol 252:153226

    Article  CAS  Google Scholar 

  • Ben-Asher J, Tsuyuki I, Bravdo BA, Sagih M (2006) Irrigation of grapevines with saline water: I. Leaf area index, stomatal conductance, transpiration and photosynthesis. Agric Water Manag 83(1):13–21

    Article  Google Scholar 

  • Bensalem-Fnayou A, Bouamama B, Ghorbel A, Mliki A (2011) Investigations on the leaf anatomy and ultrastructure of grapevine (Vitis vinifera L.) under heat stress. Microsc Res Tech 74:756–762

    Article  Google Scholar 

  • Bernardo S, Dinis LT, Machado N, Moutinho-Pereira J (2018) Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agron Sustain 38(6):1–20

    CAS  Google Scholar 

  • Bhat ZA, Padder SA, Ganaie AQ, Dar NA, Rehman HU, Wani MY (2017) Correlation of available nutrients with physicochemical properties and nutrient content of grape orchards of Kashmir. J Pharmacogn Phytochem 6(2):181–185

    CAS  Google Scholar 

  • Bindi M, Fibbi L, Miglietta F (2001) Free air CO2 enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur J Agron 14:145–155

    Article  Google Scholar 

  • Blancquaert EH, Oberholster A, Da-Silva JMR, Deloire AJ (2018) Effects of abiotic factors on phenolic compounds in the grape berry – a review. S Afr J Enol Vitic 40:1–14

    Google Scholar 

  • Caffarra A, Eccel E (2011) Projecting the impacts of climate on the phenology of grapevine in a mountain area. Aust J Grape Wine Res 17:52–61

    Article  Google Scholar 

  • Cameron W, Petrie PR, Barlow EWR, Patrick CJ, Howell K, Fuentes S (2021) Is advancement of grapevine maturity explained by an increase in the rate of ripening or advancement of veraison? Aust J Grape Wine Res 27(3):334–347

    Article  CAS  Google Scholar 

  • Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676

    Article  CAS  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Jones R, Kolli RK, Kwon WT, Laprise R, Magana Rueda V (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Costa JM, Ortuno MF, Lopes CM, Chaves MM (2012) Grapevine varieties exhibiting differences in stomatal response to water deficit. Funct Plant Biol 39:179–189

    Article  Google Scholar 

  • Costa R, Fraga H, Fonseca A, De Cortazar-Atauri IG, Val MC, Carlos C, Reis S, Santos JA (2019) Grapevine phenology of cv. Touriga Franca and Touriga Nacional in the Douro Wine Region: modelling and climate change projections. J Agron 9:210

    Google Scholar 

  • Cramer GR, Van Sluyter SC, Hopper DW, Pascovici D, Keighley T, Haynes PA (2013) Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol 13:49

    Article  CAS  Google Scholar 

  • Creasy GL, Creasy LL (2018) Grapes, vol 27. CABI

    Book  Google Scholar 

  • De Orduna RM (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855

    Article  Google Scholar 

  • Duchene E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99

    Article  Google Scholar 

  • Duchene E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to climate change. Clim Res 41:193–204

    Article  Google Scholar 

  • Ebadi A, Coombe BG, May P (1995) Fruit-set on small Chardonnay and Shiraz vines grown under varying temperature regimes between budburst and flowering. Aust J Grape Wine Res 1:3–10

    Article  Google Scholar 

  • Edwards EJ, Unwin DJ, Sommer KJ, Downey MO, Mollah M (2016) The response of commercially managed, field grown, grapevines (Vitis vinifera L.) to a simulated future climate consisting of elevated CO2 in combination with elevated air temperature. Acta Hortic 1115:103–110

    Article  Google Scholar 

  • Edwards EJ, Unwin D, Kilmister R, Treeb M (2017) Multi-seasonal effects of warming and elevated CO2; on the physiology, growth and production of mature, field grown, shiraz grapevines. OENO One 51:127–132

    Article  CAS  Google Scholar 

  • Esteban MA, Villanueva MJ, Lissarrague JR (2002) Relationships between different berry components in tempranillo (Vitis vinifera L.) grapes from irrigated and non-irrigated vines during ripening. J Sci Food Agric 82:1136–1146

    Article  CAS  Google Scholar 

  • Ewart A, Kliewer WM (1977) Effects of controlled day and night temperatures and nitrogen on fruit-set, ovule fertility, and fruit composition of several wine grape cultivars. Am J Enol Vitic 28:88–95

    CAS  Google Scholar 

  • FAOSTAT (2016) Food and agricultural commodities production. FAOSTAT

    Google Scholar 

  • Ferrandino A, Lovisolo C (2014) Abiotic stress effects on grapevine (Vitis vinifera L.): focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ Exp Bot 103:138–147

    Article  CAS  Google Scholar 

  • Ferreira MI, Conceicao N, Malheiro AC, Silvestre JM, Silva RM (2015) Water stress indicators and stress functions to calculate soil water depletion in deficit irrigated grapevine and kiwi. In: VIII international symposium on irrigation of horticultural crops, vol 1150, pp 119–126

    Google Scholar 

  • Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82:631–639

    Article  Google Scholar 

  • Field SK, Smith JP, Holzapfel BP, Hardie WJ, Emery RJN (2009) Grapevine response to soil temperature: xylem cytokinins and carbohydrate reserve mobilization from budbreak to anthesis. Am J Enol Vitic 60:164–172

    Article  CAS  Google Scholar 

  • Fraga H (2019) Viticulture and winemaking under climate change. Agronomy 9(12):783

    Article  Google Scholar 

  • Fraga H, Santos JA (2017) Daily prediction of seasonal grapevine production in the Douro wine region based on favourable meteorological conditions. Aust J Grape Wine Res 23:296–304

    Article  Google Scholar 

  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2012) An overview of climate change impacts on European viticulture. Food Energy Secur 1(2):94–110

    Article  Google Scholar 

  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2013) An overview of climate change impacts on European viticulture. Food Energy Secur 1(2):94–110

    Article  Google Scholar 

  • Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2014) Climate factors driving wine production in the Portuguese Minho region. Agric Meteorol 185:26–36

    Article  Google Scholar 

  • Fraga H, Atauri IG, Santos JA (2018) Viticultural irrigation demands under climate change scenarios in Portugal. Agric Water Manag 196:66–74

    Article  Google Scholar 

  • Fraga H, Pinto JG, Santos JA (2019) Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: a multi-model assessment. Clim Chang 152:179–193

    Article  Google Scholar 

  • Girona J, Marsal J, Mata M, Del Campo J, Basile B (2009) Phenological sensitivity of berry growth and composition of tempranillo grapevines (Vitis vinifera L.) to water stress. Aust J Grape Wine Res 15:268–277

    Article  CAS  Google Scholar 

  • Goncalves B, Falco V, Moutinho-Pereira J, Bacelar E, Peixoto F, Correia C (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine. J Agric Food Chem 57:265–273

    Article  CAS  Google Scholar 

  • Greenspan M (2005) Integrated irrigation of California wine grapes. Prac Winery Vineyard 27(3):21–79

    Google Scholar 

  • Greer DH (2019) Stomatal and non-stomatal limitations at different leaf temperatures to the photosynthetic process during the post-harvest period for Vitis vinifera cv. Chardonnay vines. N Z J Crop Hortic Sci 48:1–21

    Article  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35:1050–1064

    Article  Google Scholar 

  • Greer DH, Weedon MM (2013) The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Front Plant Sci 491(4):1–9

    Google Scholar 

  • Greer DH, Weston C (2010) Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. Funct Plant Biol 37:206–214

    Article  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2005) The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol 7(5):476–483

    Article  CAS  Google Scholar 

  • Hu S, Ding Y, Zhu C (2020) Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci 11:375

    Article  Google Scholar 

  • Intrigliolo DS, Castel JR (2010) Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrig Sci 28(2):113–125

    Article  Google Scholar 

  • IPCC (2014a) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, p 151

    Google Scholar 

  • IPCC (2014b) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jarvis C, Barlow E, Darbyshire R, Eckard R, Goodwin I (2017) Relationship between viticultural climatic indices and grape maturity in Australia. Int J Biometeorol 61:1849–1862

    Article  CAS  Google Scholar 

  • Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261

    Article  Google Scholar 

  • Jones G, Snead N, Nelson P (2004) Geology and wine 8. Modeling viticultural landscapes: a GIS analysis of the terroir potential in the Umpqua Valley of Oregon. Geosci Can 31(4):167–178

    Google Scholar 

  • Junquera P, Sanchez de Miguel P, Linares R, Baeza P (2006) Study of influence of irrigation rates and distribution in the time. In: Agronomic behaviour of vineyard to different water availability

    Google Scholar 

  • Junquera P, Lissarrague JR, Jimenez L, Linares R, Baeza P (2012) Long-term effects of different irrigation strategies on yield components, vine vigour and grape composition in cv. Cabernet-sauvignon (Vitis vinifera L.). Irrig Sci 30(5):351–361

    Article  Google Scholar 

  • Kadir S, Von Weihe M, Khatib KA (2007) Photochemical efficiency and recovery of photosystem II in grapes after exposure to sudden and gradual heat stress. J Am Soc Hortic Sci 132:764–769

    Article  Google Scholar 

  • Keenan T, Sabate S, Gracia C (2010) Soil water stress and coupled photosynthesis-conductance models: bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis. Agric For Meteorol 150:443–453

    Article  Google Scholar 

  • Keller M (2005) Cluster thinning effects on three deficit-irrigated Vitis vinifera cultivars. Am J Enol Vitic 56(2):91–103

    Article  Google Scholar 

  • Keller M (2010) The science of grapevines: anatomy and physiology. Elsevier, Inc, Amsterdam, p 400

    Google Scholar 

  • Keller M, Tarara JM, Mills LJ (2010) Spring temperatures alter reproductive development in grapevines. Aust J Grape Wine Res 16:445–454

    Article  Google Scholar 

  • Kizildeniz T, Mekni I, Santesteban H, Pascual I, Morales F, Irigoyen JJ (2015) Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agric Water Manag 159:155–164

    Article  Google Scholar 

  • Kliewer WM (1977) Effect of high temperatures during the bloom-set period on fruit-set, ovule fertility, and berry growth of several grape cultivars. Am J Enol Vitic 28:215–222

    Google Scholar 

  • Koch B, Oehl F (2018) Climate change favors grapevine production in temperate zones. Agric Sci 9:247–263

    CAS  Google Scholar 

  • Kose B (2014) Phenology and ripening of Vitis vinifera L. and Vitis labrusca L. varieties in the maritime climate of Samsun in Turkey’s Black Sea Region. S Afr J Enol Vitic 35(1):90–102

    Google Scholar 

  • Koufos GC, Mavromatis T, Koundouras S, Jones GV (2020) Adaptive capacity of winegrape varieties cultivated in Greece to climate change: current trends and future projections. Oeno One 54(4):1201–1219

    Article  Google Scholar 

  • Kuhn N, Guan L, Dai ZW, Wu BH, Lauvergeat V, Gomes E, Li SH, Godoy F, Arce-Johnson P, Delrot S (2013) Berry ripening: recently heard through the grapevine. J Exp Bot 65(16):4543–4559

    Article  Google Scholar 

  • Kun Z, Bai-Hong C, Yan H, Rui Y, Yu-an W (2018) Effects of short-term heat stress on PSII and subsequent recovery for senescent leaves of Vitis vinifera L. cv. Red Globe. J Integr Agric 17:2683–2693

    Article  Google Scholar 

  • Lamaoui M, Jemo M, Datla R, Bekkaoui F (2018) Heat and drought stresses in crops and approaches for their mitigation. Front Chem 6:26

    Article  Google Scholar 

  • Liu M, Fang Y (2011) Effects of heat stress on physiological indexes and ultrastructure of grapevines. Sci Agric Sin 53:1444–1458

    Google Scholar 

  • Lovisolo C, Perrone C, Carra I, Ferrandino A, Flexas J, Medrano H (2010) Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Funct Plant Biol 37(2):98–116

    Article  CAS  Google Scholar 

  • Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang JF, Wang LJ (2011) Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLoS One 6(8):23033

    Article  Google Scholar 

  • Mackenzie DE, Christy AG (2005) The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Water Sci Technol 51(1):27–37

    Article  CAS  Google Scholar 

  • Magalhaes N (2008) Tratado de viticultura: a videira, a vinha eo terroir. Chaves Ferreira, Lisboa

    Google Scholar 

  • Magalhaes N (2015) Tratado de Viticultura: A Videira, a Vinha e o Terroir. Esfera Poética, Lisboa, p 605

    Google Scholar 

  • Malheiro AC, Campos R, Fraga H, Eiras-Dias J, Silvestre J, Santos JA (2013) Winegrape phenology and temperature relationships in the Lisbon wine region, Portugal. OENO One 47(4):287–299

    Article  Google Scholar 

  • Martinez-Luscher J, Morales F, Sanchez-Diaz M, Delrot S, Aguirreolea J, Gomes E (2015) Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Sci 236:168–176

    Article  CAS  Google Scholar 

  • McCarthy M (2005) Water stress at flowering and effects on yield. In: Garis K, Dundon C, Johnstone R, Partridge S (eds) Transforming flowers to fruit. ASVO, Adelaide, pp 35–37

    Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma ML, Lamarque JF, Matsumoto K, Montzka SA, Raper SC, Riahi K, Thomson AG (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109(1):213–241

    Article  CAS  Google Scholar 

  • Mosedale JR, Wilson RJ, Maclean IMD (2015) Climate change and crop exposure to adverse weather: changes to frost risk and grapevine flowering conditions. PLoS One 10(10):e0141218

    Article  Google Scholar 

  • Moutinho-Pereira J, Correia C, Falco V (2006) Effects of elevated CO2 on grapevines grown under Mediterranean field conditions–impact on grape and wine composition. Aust J Grape Wine Res 6:2–12

    Google Scholar 

  • Moutinho-Pereira J, Goncalves B, Bacelar E, Cunha JB, Coutinho J, Correia CM (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes. Vitis 48(4):159–165

    CAS  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • Munitz S, Schwartz A, Netzer Y (2016) Evaluation of seasonal water use and crop coefficients for cabernet sauvignon’ grapevines as the base for skilled regulated deficit irrigation. Acta Hortic 1115:33–40

    Article  Google Scholar 

  • Munitz S, Netzer Y, Schwartz A (2017) Sustained and regulated deficit irrigation of field-grown merlot grapevines. Aust J Grape Wine Res 23(1):87–94

    Article  Google Scholar 

  • Munitz S, Netzer Y, Shtein I, Schwartz A (2018) Water availability dynamics have long-term effects on mature stem structure in Vitis vinifera. Am J Bot 105(9):1443–1452

    Article  Google Scholar 

  • Naor A, Bravdo B, Hepner Y (1993) Effect of post-veraison irrigation level on sauvignon blanc yield, juice quality and water relations. S Afr J Enol Vitic 14(2):19–25

    Google Scholar 

  • Neethling E, Barbeau G, Quenol H (2012) Change in climate and berry composition for grapevine varieties cultivated in the Loire Valley. Clim Res 53:89–101

    Article  Google Scholar 

  • Neethling E, Petitjean T, Quenol H, Barbeau G (2017) Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig Adapt Strateg Glob Chang 22:777–803

    Article  Google Scholar 

  • Nievola CC, Carvalho CP, Carvalho V, Rodrigues E (2017) Rapid responses of plants to temperature changes. Temperature 4:371–405

    Article  Google Scholar 

  • O’Neill SD (1983) Role of osmotic potential gradients during water stress and leaf senescence in Fragaria virginiana. Plant Physiol 72(4):931–937

    Article  Google Scholar 

  • OIV (2010) Criteria for the methods of quantification of potentially allergenic residues of fining agent proteins in wine. Resolution OIV/OENO, p 427

    Google Scholar 

  • OIV (2013) Description of world vine varieties. L’Organisation Internationale de la Vigne et du Vin, Paris

    Google Scholar 

  • OIV (2019) Statistical report on world viti-viniculture. International Organisation of Vine and Wine, Paris

    Google Scholar 

  • Pagay V, Collins C (2017) Effects of timing and intensity of elevated temperatures on reproductive development of field-grown Shiraz grapevines. OENO One 51(4). https://doi.org/10.20870/oeno-one.2017.51.4.1066

  • Parker A, Garcia I, Chuine I, Barbeau G, Bois B, Boursiquot JM, Cahurel JY, Claverie M, Dufourcq T, Geny L (2013) Classification of varieties for their timing of flowering and veraison using a modelling approach: a case study for the grapevine species Vitis vinifera L. Agric For Meteorol 180:249–264

    Article  Google Scholar 

  • Pellegrino A, Lebon E, Simmoneau T, Wery J (2005) Towards a simple indicator of water stress in grapevine (Vitis vinifera L.) based on the differential sensitivities of vegetative growth components. Aust J Grape Wine Res 11(3):306–315

    Article  Google Scholar 

  • Poni S, Lakso N, Turner JR, Melious RE (1994) Interactions of crop level and late season water stress on growth and physiology of fieldgrown Concord grapevines. Am J Enol Vitic 45(2):252–258

    Google Scholar 

  • Poudel PR, Mochioka R, Beppu K, Kataoka I (2009) Influence of temperature on berry composition of interspecific hybrid wine grape ‘Kadainou R-1’ (Vitis ficifolia var. ganebu × V. vinifera ‘Muscat of Alexandria’). Am J Enol Vitic 78(2):169–174

    CAS  Google Scholar 

  • Prasad PVV, Craufurd PQ, Summerfield RJ (1999) Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann Bot 84:381–386

    Article  Google Scholar 

  • Rajasekaran K, Mullins MG (1985) Somatic embryo formation by cultured ovules of Cabernet Sauvignon grape: effects of fertilization and of the male gameticide toluidine blue. Vitis 24:151–157

    Google Scholar 

  • Rogiers SY, Greer DH, Hutton RJ, Landsberg JJ (2009) Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar. J Exp Bot 60:3751–3763

    Article  CAS  Google Scholar 

  • Rogiers SY, Holzapfel BP, Smith JP (2011) Sugar accumulation in roots of two grape varieties with contrasting response to water stress. Ann Appl Biol 159(3):399–413

    Article  CAS  Google Scholar 

  • Romeroz P, Gil-Munoz R, Del Amor FM, Valdes E, Fernandez JI, Martinez-Cutillas A (2013) Regulated deficit irrigation based upon optimum water status improves phenolic composition in monastrell grapes and wines. Agric Water Manag 121:85–101

    Article  Google Scholar 

  • Rossouw GC, Smith JP, Barril C, Deloire A, Holzapfel BP (2017) Implications of the presence of maturing fruit on carbohydrate and nitrogen distribution in grapevines under postveraison water constraints. J Am Soc Hortic Sci 142(2):71–84

    Article  CAS  Google Scholar 

  • Ruel JJ, Walker MA (2006) Resistance to Pierce’s disease in Muscadinia rotundifolia and other native grape species. Am J Enol Vitic 57(2):158–165

    Article  Google Scholar 

  • Salazar-Parra C, Aguirreolea J, Sanchez-Diaz M, Irigoyen JJ, Morales F (2012) Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes’ response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plant 144:99–110

    Article  CAS  Google Scholar 

  • Salon JL, Chirivella C, Castel JR (2005) Response of cv Bobal to timing of deficit irrigation in Requena, Spain: water relations, yield and wine quality. Am J Enol Vitic 56:1–8

    Article  Google Scholar 

  • Santesteban LG, Miranda C, Royo JB (2011) Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. ‘Tempranillo’. Agric Water Manag 98:1171–1179

    Article  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Sidhu GPS, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K (2019) Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul 39:509–531

    Article  Google Scholar 

  • Shellie KC (2006) Vine and berry response of merlot (Vitis vinifera L.) to differential water stress. Am J Enol Vitic 57:514–551

    Article  Google Scholar 

  • Snider JL, Oosterhuis DM, Loka DA, Kawakami EM (2011) High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. J Plant Physiol 168:1168–1175

    Article  CAS  Google Scholar 

  • Staudt G (1982) In vivo pollen germination and pollen tube growth in Vitis and dependence on temperature. Vitis 21:205–216

    Google Scholar 

  • Tomasi D, Jones GV, Giust M, Lovat L, Gaiotti F (2011) Grapevine phenology and climate change: relationships and trends in the Veneto Region of Italy for 1964–2009. Am J Enol Vitic 62:329–339

    Article  Google Scholar 

  • Uriarte D, Intrigliolo DS, Mancha LA, Picon-Toro J, Valdes E, Prieto MH (2015) Interactive effects of irrigation and crop level on tempranillo vines in a semiarid climate. Am J Enol Vitic 66(2):101–111

    Article  Google Scholar 

  • Uriarte D, Mancha LA, Moreno D, Bejarano D, Valdes E, Talaverano I (2017) Effects of timing of water deficit induction on Dona Blanca white grapevine under semiarid growing conditions of South-Western Spain. In: Marsal J, Girona J (eds) ISHS Acta Hortic, pp 1150–1168

    Google Scholar 

  • Van Leeuwen C, Destrac-Irvine A (2016) Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO ONE 51:147–154

    Article  Google Scholar 

  • Van Leeuwen C, Destrac-Irvine A (2017) Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 51:147–154

    Article  Google Scholar 

  • Van Leeuwen C, Seguin G (2006) The concept of terroir in viticulture. J Wine Res 17:1–10

    Article  Google Scholar 

  • Van Leeuwen C, Friant P, Chone X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55(3):207–217

    Article  Google Scholar 

  • Van Leeuwen C, Destrac-Irvine A, Dubernet M, Duchene E, Gowdy M, Marguerit E, Pieri P, Parker A, De Resseguier L, Ollat N (2019) An update on the impact of climate change in viticulture and potential adaptations. J Agron 9(9):514

    Google Scholar 

  • Vanden HJ, Centinari M (2021) Under-vine vegetation mitigates the impacts of excessive precipitation in vineyards. Front Plant Sci 1542:713135

    Article  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34

    Article  Google Scholar 

  • Webb LB, Whetton PH, Barlow EWR (2007) Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust J Grape Wine Res 13:165–175

    Article  Google Scholar 

  • Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD (2005) Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Sci 169:928–934

    Article  CAS  Google Scholar 

  • White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. PNAS (USA) 103:11217–11222

    Article  CAS  Google Scholar 

  • Winkler AJ (1974) General viticulture. University of California Press

    Google Scholar 

  • Wohlfahrt Y, Smith JP, Tittmann S, Honermeier B, Stoll M (2018) Primary productivity and physiological responses of Vitis vinifera L. cvs. under free air carbon dioxide enrichment (FACE). Eur J Agron 101:149–162

    Article  CAS  Google Scholar 

  • Wohlfahrt Y, Collins C, Stoll M (2019) Grapevine bud fertility under conditions of elevated carbon dioxide: this article is published in cooperation with the 21th GIESCO International Meeting, June 23–28 2019, Thessaloniki, Greece. Guests editors: Stefanos Koundouras and Laurent Torregrosa. Oeno One 53:2. https://doi.org/10.20870/oeno-one.2019.53.2.2428

    Article  Google Scholar 

  • Wohlfahrt Y, Patz CD, Schmidt D, Rauhut D, Honermeier B, Stoll M (2021) Responses on must and wine composition of Vitis vinifera L. cvs. riesling and cabernet sauvignon under a free air CO2 enrichment (FACE). Foods 10:145

    Article  CAS  Google Scholar 

  • Xiao F, Yang ZQ, Lee KW (2017) Photosynthetic and physiological responses to high temperature in grapevine (Vitis vinifera L.) leaves during the seedling stage. J Hortic Sci Biotechnol 92:2–10

    Article  CAS  Google Scholar 

  • Yamane T, Jeong ST, Goto-Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54–59

    Article  CAS  Google Scholar 

  • Yau IH, Davenport JR, Rupp RA (2013) Characterizing inland Pacific Northwest American viticultural areas with geospatial data. PLoS One 8(4):e61994

    Article  CAS  Google Scholar 

  • Zsofi ZS, Toth E, Rusjan D, Balo B (2011) Terroir aspects of grape quality in a cool climate wine region: relationship between water deficit, vegetative growth and berry sugar concentration. Sci Hortic 127(4):494–499

    Article  CAS  Google Scholar 

  • Zufferey V, Murisier F, Vivin P, Belcher S, Lorenzini F, Spring JL (2012) Carbohydrate reserves in grapevine (Vitis vinifera L. ‘Chasselas’) the influence of the leaf to fruit ratio. Vitis 51(3):103–110

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rafique, R., Ahmad, T., Kalsoom, T., Khan, M.A., Ahmed, M. (2022). Climatic Challenge for Global Viticulture and Adaptation Strategies. In: Ahmed, M. (eds) Global Agricultural Production: Resilience to Climate Change . Springer, Cham. https://doi.org/10.1007/978-3-031-14973-3_22

Download citation

Publish with us

Policies and ethics