Skip to main content

Building a Test Bed for the Periodical Technical Inspection of Sensors Perceiving the Environment in Autonomous Vehicles

  • Conference paper
  • First Online:
  • 944 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13415))

Abstract

With the introduction of the first available autonomous vehicles, the safety and reliability of these systems becomes even more relevant than it was in regard to driver assistance systems, as the driver is not necessarily available to immediately take over in controlling the vehicle. Especially the environmental perception of the individual vehicle plays a key part in its ability to navigate the public roads. At the same time, the sensors used for the perception are very likely to differ between individual vehicles over their lifespan due to maintenance and environmental differences as well as different incidents, that might impact their functionality. The periodical technical inspection of road vehicles is an established tool to ensure the technical capabilities of vehicles that are using public roads. In this paper, we present a more detailed overview of some of our suggestions to advance the periodical technical inspection for passenger cars with regard to advancing driver assistance systems and autonomous driving vehicles as these systems are having a wider impact on the technical state of the vehicle. The focus in this paper is put specifically onto the sensors for the environmental perception of the surroundings of the vehicle. We therefore present herein a test bed with artificial targets for the periodical technical inspection to evaluate the sensor systems and facilitate the vehicles roadworthiness classification based on the promising results of our preliminary tests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    [12] notes, that the so-called system data that is collected for the vehicles contains “information on the actual installation of the vehicle systems and the corresponding examination procedures” and can contain “for example, physical quantities, fault codes, algorithms, identification features or tamper-proof displays”.

References

  1. Statistisches Landesamt Baden-Württemberg: Straßenverkehrsunfälle seit 1977 nach Ursache, Lage und Typen [road traffic accidents since 1977 by cause, location and types], https://www.statistik-bw.de/Verkehr/Unfaelle/10025137.tab?R=LA. Accessed 09 Jun 2022

  2. European commission: Europe on the move - safe mobility: a Europe that protects (2018). https://ec.europa.eu/transport/road_safety/system/files/2021-07/20180517_mobility_safety_final.pdf. Accessed 09 Jul 2022

  3. European commission: Europe on the move - new safety features in your car (2019). https://ec.europa.eu/docsroom/documents/34588/attachments/1/translations/en/renditions/native. Accessed 09 Jun 2022

  4. Statistisches Landesamt Baden-Württemberg: Heilig’s Blechle - 125 Jahre Automobil [Heilig’s Blechle - 125 years of automobiles] (2021). https://www.statistik-bw.de/Service/Veroeff/Querschnittsver!F6ffentlichungen/806911001.pdf. Accessed 09 June 2022

  5. Mayer, H.: Und dann macht es bumm: Geschichte des TÜV [And then it goes boom: History of the TÜV] 15 January 2016. https://www.faz.net/aktuell/technik-motor/technik/die-technischen-ueberwachungsvereine-im-wandel-der-zeit-14007191.html. Accessed 09 Jul 2022

  6. Directive 2014/45/EU of the European Parliament and of the Council of 3 April 2014 on periodic roadworthiness tests for motor vehicles and their trailers and repealing Directive 2009/40/EC including Corrigendum OJ L 219, p. 25, 22 Aug 2019, (2014/45/EU)

    Google Scholar 

  7. A. Donath, A.: S-Klasse mit Level 3: Mercedes darf hochautomatisiert fahren [S-Class with Level 3: Mercedes may drive with conditional automation], 09 December 2021. https://www.golem.de/news/s-klasse-mit-level-3-mercedes-darf-hochautomatisiert-fahren-2112-161688.html. Accessed 09 Jul 2022

  8. Müller, F., Nenninger P., Sax, E.: Analysis of requirements for autonomous driving systems. In: 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 87–93 (2020). https://doi.org/10.1109/IEMCON51383.2020.9284853

  9. Gierl, M., Müller, F., Kriesten, R., Nenninger, P., Sax, E.: Challenges for periodical technical inspections of intelligent cars. In: Reports on Energy Efficient Mobility, vol. 1, pp. 9–14 (2021). https://doi.org/10.5281/zenodo.4569409

  10. Braun, H., Bönninger, J., Missbach, S., Süssbier,R.: Erkennen und Bewerten von Mängeln an elektronischen Systemen und Bauteilen im Kraftfahrzeug [Detection and evaluation of defects in electronic systems and components in motor vehicles], Kirschbaum, Bonn (2015). ISBN 978-3-7812-1920-5

    Google Scholar 

  11. Straßenverkehrs-Zulassungs-Ordnung [2nd road traffic licensing regulations], Version including revisions until 18 May 2017

    Google Scholar 

  12. Bundesministerium für Verkehr, Bau und Stadtentwicklung: Einundvierzigste Verordnung zur Änderung straßenverkehrsrechtlicher Vorschriften [Forty-first Ordinance on the Amendment of Road Traffic Regulations]”, Teil 1 Nr. 11, pp. 470–501 (2006). http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl106s0470.pdf. Accessed 09 June 2022

  13. SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles, revised version of April 2021

    Google Scholar 

  14. Winner, H., Hakuli, S., Lotz, F., Singer, C.: (ed.): Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort [Handbook of Driver Assistance Systems: Fundamentals, Components and Systems for Active Safety and Comfort], 3rd revised and supplemented revision, Wiesbaden, Springer Vieweg (2015)

    Google Scholar 

  15. Bosch aftermarket: DAS 3000 Die neue computergesteuerte Mehrmarken- Justagevorrichtung für Fahrerassistenzsysteme [DAS 3000 The new computer-controlled multi-brand adjustment device for driver assistance systems]. https://www.boschaftermarket.com/xrm/media/images/country_specific/de/equipment_5/adas_driver_assistance_system_2/xx_pdfs_40/facelift_das_3000.pdf. Accessed 09 Jun 2022

  16. United Nations: Addendum 156 – UN Regulation No. 157 Uniform provisions concerning the approval of vehicles with regard to Automated Lane Keeping Systems (2021)

    Google Scholar 

  17. Bundesrat: 41. Verordnung zur Änderung straßenverkehrsrechtlicher Vorschriften [41st Ordinance on the Amendment of Road Traffic Regulations], 925/05, 23 December 2005. https://dserver.bundestag.de/brd/2005/0925-05.pdf, Accessed 09 Jul 2022

  18. Malaquin, C.: Towards ADAS to Imaging radar for automotive market and technology trends. In: Microwave & RF Conference (2019)

    Google Scholar 

  19. Walz, E.: Mercedes-Benz cleared to offer its DRIVE PILOT ‘eyes off the road’ level-3 autonomous driving system on vehicles in Germany. https://m.futurecar.com/5054/Mercedes-Benz-Cleared-to-Offer-its-DRIVE-PILOT-Eyes-Off-the-Road-Level-3-Autonomous-Driving-System-on-Vehicles-in-Germany. Accessed 09 Jul 2022

  20. Bundesministerium für Verkehr und digitale Infrastruktur: Richtlinie für die Überprüfung der Einstellung der Scheinwerfer von Kraftfahrzeugen bei der Hauptuntersuchung nach § 29 Straßenverkehrs- Zulassungs-Ordnung (StVZO) (HU-Scheinwerfer-Prüfrichtlinie) [Guideline for checking the setting of motor vehicle headlights during the periodic technical inspection in accordance with § 29 of the German Road Traffic Licensing Regulations (StVZO) (HU Headlight Inspection Guideline)], 12. November 2018, https://www.amz.de/sites/default/files/2019-09/amz_Verkehrsblatt_2018_174-web.pdf. Accessed 09 Jul 2022

  21. Koch, K.: Challenges of radar sensor integration into modern vehicles, smart energy and systems (2019)

    Google Scholar 

  22. Geugis, W.: Inbetriebnahme von Fahrerassistenzkameras und Implementierung einer Objektdetektion unter ROS und OpenCV [Commissioning of driver assistance cameras and implementation of object detection using ROS and OpenCV], B.Eng. Thesis, IEEM, Hochschule Karlsruhe, Germany (2021)

    Google Scholar 

  23. Merz, P.: Ansätze zum Test der Verkehrssicherheit von Laserscannern in hochautomatisierten Fahrsystemen [Methods to test the roadworthiness of Lidar sensors in highly automated driving systems], B.Eng. Thesis, IEEM, Hochschule Karlsruhe, Germany (2021)

    Google Scholar 

  24. Mihat, A.: Approaches to Testing Highly Automated Driving Systems in Production and Field Radar System, M.Sc. Thesis, University DeOviedo, Spain, and IEEM, Hochschule Karlsruhe, Germany (2019)

    Google Scholar 

  25. Ilgen, B.: Implementierung eines Testansatzes für Radarsysteme in Kraftfahrzeugen [Implementation of a test approach for radar systems in motor vehicles], B.Eng. Thesis, Esslingen University of Applied Sciences and IEEM, Hochschule Karlsruhe, Germany (2021)

    Google Scholar 

  26. DIN 67520:2013-10 — Retro-reflecting materials for traffic safety - Photometric minimum requirements for retro-reflective sheetings

    Google Scholar 

  27. Ouster, Inc.: OS1 mid-range high-resolution imaging Lidar, datasheet rev. 7 January 2021. https://data.ouster.io/downloads/datasheets/datasheet-revc-v2p1-os1.pdf. Accessed 09 Jun 2022

  28. Projekt ervast: Einsatz dynamischer Verkehrselemente für die Prüfung automatisierter Fahrfunktionen [Use of dynamic traffic elements for the testing of automated driving functions]. https://www.ervast-projekt.de/. Accessed 09 Jun 2022

Download references

Acknowledgments

This work has been funded by GTÜ Gesellschaft für Technische Überwachung mbH, Stuttgart, Germany. The authors wish to thank Peter Neugebauer and Mario Schnäbele for their contributions to this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Müller, F., Nenninger, P., Sax, E. (2022). Building a Test Bed for the Periodical Technical Inspection of Sensors Perceiving the Environment in Autonomous Vehicles. In: Trapp, M., Schoitsch, E., Guiochet, J., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2022 Workshops . SAFECOMP 2022. Lecture Notes in Computer Science, vol 13415. Springer, Cham. https://doi.org/10.1007/978-3-031-14862-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14862-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14861-3

  • Online ISBN: 978-3-031-14862-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics