Skip to main content

STPA-Driven Multilevel Runtime Monitoring for In-Time Hazard Detection

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13414))

Included in the following conference series:

Abstract

Runtime verification or runtime monitoring equips safety-critical cyber-physical systems to augment design assurance measures and ensure operational safety and security. Cyber-physical systems have interaction failures, attack surfaces, and attack vectors resulting in unanticipated hazards and loss scenarios. These interaction failures pose challenges to runtime verification regarding monitoring specifications and monitoring placements for in-time detection of hazards. We develop a well-formed workflow model that connects system theoretic process analysis, commonly referred to as STPA, hazard causation information to lower-level runtime monitoring to detect hazards at the operational phase. Specifically, our model follows the DepDevOps paradigm to provide evidence and insights to runtime monitoring on what to monitor, where to monitor, and the monitoring context. We demonstrate and evaluate the value of multilevel monitors by injecting hazards on an autonomous emergency braking system model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, B.: Synthesis of a Context-Aware Safety Monitor for an Artificial Pancreas System. Master’s thesis, University of Virginia (2019)

    Google Scholar 

  2. Bakirtzis, G., Carter, B.T., Fleming, C.H., Elks, C.R.: MISSION AWARE: evidence-based, mission-centric cybersecurity analysis. arXiv:1712.01448 [cs.CR] (2017)

  3. Combemale, B., Wimmer, M.: Towards a model-based DevOps for cyber-physical systems. In: Bruel, J.-M., Mazzara, M., Meyer, B. (eds.) DEVOPS 2019. LNCS, vol. 12055, pp. 84–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39306-9_6

    Chapter  Google Scholar 

  4. Cui, J., Liew, L.S., Sabaliauskaite, G., Zhou, F.: A review on safety failures, security attacks, and available countermeasures for autonomous vehicles. Ad Hoc Netw. (2019). https://doi.org/10.1016/j.adhoc.2018.12.006

    Article  Google Scholar 

  5. Daian, P., Shiraishi, S., Iwai, A., Manja, B., Rosu, G.: RV-ECU: maximum assurance in-vehicle safety monitoring. SAE Techn. Paper Ser. (2016). https://doi.org/10.4271/2016-01-0126

    Article  Google Scholar 

  6. Duan, J.: Improved systemic hazard analysis integrating with systems engineering approach for vehicle autonomous emergency braking system. ASME J. Risk Uncertain. Part B (2022). https://doi.org/10.1115/1.4051780

    Article  Google Scholar 

  7. Fremont, D.J., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Safety in autonomous driving: can tools offer guarantees? In: Proceedings of the 58th ACM/IEEE Design Automation Conference (DAC 2021). IEEE (2021). https://doi.org/10.1109/DAC18074.2021.9586292

  8. Gautham, S., Jayakumar, A.V., Elks, C.: Multilevel runtime security and safety monitoring for cyber physical systems using model-based engineering. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12235, pp. 193–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55583-2_14

    Chapter  Google Scholar 

  9. Goodloe, A.E., Pike, L.: Monitoring distributed real-time systems: a survey and future directions. Technical report CR-2010-216724, NASA (2010)

    Google Scholar 

  10. Haupt, N.B., Liggesmeyer, P.: A runtime safety monitoring approach for adaptable autonomous systems. In: Romanovsky, A., Troubitsyna, E., Gashi, I., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11699, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26250-1_13

    Chapter  Google Scholar 

  11. Jayakumar, A.V., Elks, C.: Property-based fault injection: a novel approach to model-based fault injection for safety critical systems. In: Zeller, M., Höfig, K. (eds.) IMBSA 2020. LNCS, vol. 12297, pp. 115–129. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58920-2_8

    Chapter  Google Scholar 

  12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebraic Methods Program. (2009). https://doi.org/10.1016/j.jlap.2008.08.004

    Article  MATH  Google Scholar 

  13. Leveson, N., Thomas, J.P.: STPA handbook (2018)

    Google Scholar 

  14. Liu, Y.A., Stoller, S.D.: Assurance of distributed algorithms and systems: runtime checking of safety and liveness. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 47–66. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_3

    Chapter  Google Scholar 

  15. Mathworks: Autonomous emergency braking with sensor fusion (2021). https://www.mathworks.com/help/driving/ug/autonomous-emergency-braking-with-sensor-fusion.html

  16. Redfield, S.A., Seto, M.L.: Verification challenges for autonomous systems. In: Lawless, W.F., Mittu, R., Sofge, D., Russell, S. (eds.) Autonomy and Artificial Intelligence: A Threat or Savior?, pp. 103–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59719-5_5

    Chapter  Google Scholar 

  17. Reich, J., et al.: Engineering of runtime safety monitors for cyber-physical systems with digital dependability identities. In: Casimiro, A., Ortmeier, F., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12234, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54549-9_1

    Chapter  Google Scholar 

  18. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced application domains (beyond software). Form. Methods Syst. Des. 1–57 (2019). https://doi.org/10.1007/s10703-019-00337-w

  19. Schwenger, M.: Monitoring cyber-physical systems: from design to integration. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 87–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_5

    Chapter  Google Scholar 

  20. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9_17

    Chapter  Google Scholar 

  21. Thomas, J.: Extending and automating a systems-theoretic hazard analysis for requirements generation and analysis. Ph.D. thesis, MIT (2013)

    Google Scholar 

  22. Trapp, M., Schneider, D., Weiss, G.: Towards safety-awareness and dynamic safety management. In: Proceedings of the 14th European Dependable Computing Conference (EDCC 2018) (2018). https://doi.org/10.1109/EDCC.2018.00027

  23. Zapridou, E., Bartocci, E., Katsaros, P.: Runtime verification of autonomous driving systems in CARLA. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 172–183. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_9

    Chapter  Google Scholar 

  24. Zhou, X., Ahmed, B., Aylor, J.H., Asare, P., Alemzadeh, H.: Data-driven design of context-aware monitors for hazard prediction in artificial pancreas systems. In: Proceedings of the 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks, (DSN 2021). IEEE (2021). https://doi.org/10.1109/DSN48987.2021.00058

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smitha Gautham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gautham, S., Bakirtzis, G., Will, A., Jayakumar, A.V., Elks, C.R. (2022). STPA-Driven Multilevel Runtime Monitoring for In-Time Hazard Detection. In: Trapp, M., Saglietti, F., Spisländer, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2022. Lecture Notes in Computer Science, vol 13414. Springer, Cham. https://doi.org/10.1007/978-3-031-14835-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14835-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14834-7

  • Online ISBN: 978-3-031-14835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics